
StarPU Handbook
for StarPU 0.9.1

i

Table of Contents

Preface . 1

1 Introduction to StarPU . 3
1.1 Motivation . 3
1.2 StarPU in a Nutshell . 3

1.2.1 Codelet and Tasks . 3
1.2.2 StarPU Data Management Library . 4
1.2.3 Glossary . 4
1.2.4 Research Papers . 4

2 Installing StarPU . 5
2.1 Downloading StarPU . 5

2.1.1 Getting Sources . 5
2.1.2 Optional dependencies . 6

2.2 Configuration of StarPU . 6
2.2.1 Generating Makefiles and configuration scripts 6
2.2.2 Running the configuration . 6

2.3 Building and Installing StarPU . 6
2.3.1 Building . 6
2.3.2 Sanity Checks . 6
2.3.3 Installing . 6

3 Using StarPU . 7
3.1 Setting flags for compiling and linking applications 7
3.2 Running a basic StarPU application . 7
3.3 Kernel threads started by StarPU . 7
3.4 Using accelerators . 7

4 Basic Examples . 9
4.1 Compiling and linking options . 9
4.2 Hello World . 9

4.2.1 Required Headers . 9
4.2.2 Defining a Codelet . 9
4.2.3 Submitting a Task . 11
4.2.4 Execution of Hello World . 12

4.3 Manipulating Data: Scaling a Vector . 12
4.3.1 Source code of Vector Scaling . 12
4.3.2 Execution of Vector Scaling . 14

4.4 Vector Scaling on an Hybrid CPU/GPU Machine 14
4.4.1 Definition of the CUDA Kernel . 14
4.4.2 Definition of the OpenCL Kernel . 15
4.4.3 Definition of the Main Code . 16

ii StarPU Handbook

4.4.4 Execution of Hybrid Vector Scaling . 18
4.5 Task and Worker Profiling . 19
4.6 Partitioning Data . 20
4.7 Performance model example . 21
4.8 Theoretical lower bound on execution time . 22
4.9 Insert Task Utility . 23
4.10 Debugging . 24
4.11 More examples . 24

5 How to optimize performance with StarPU
. 25

5.1 Data management . 25
5.2 Task submission . 25
5.3 Task priorities . 25
5.4 Task scheduling policy . 25
5.5 Performance model calibration . 26
5.6 Task distribution vs Data transfer . 27
5.7 Data prefetch . 27
5.8 Power-based scheduling . 27
5.9 Profiling . 28
5.10 CUDA-specific optimizations . 28

6 Performance feedback . 29
6.1 On-line performance feedback . 29

6.1.1 Enabling on-line performance monitoring 29
6.1.2 Per-task feedback . 29
6.1.3 Per-codelet feedback . 29
6.1.4 Per-worker feedback . 29
6.1.5 Bus-related feedback . 30

6.2 Off-line performance feedback . 30
6.2.1 Generating traces with FxT . 30
6.2.2 Creating a Gantt Diagram . 30
6.2.3 Creating a DAG with graphviz . 31
6.2.4 Monitoring activity . 31

6.3 Performance of codelets . 31

7 StarPU MPI support . 33
7.1 The API . 33

7.1.1 Initialisation . 33
7.1.2 Communication . 33

7.2 Simple Example . 35
7.3 MPI Insert Task Utility . 37

iii

8 Configuring StarPU . 39
8.1 Compilation configuration . 39

8.1.1 Common configuration . 39
8.1.1.1 --enable-debug . 39
8.1.1.2 --enable-fast . 39
8.1.1.3 --enable-verbose . 39
8.1.1.4 --enable-coverage . 39

8.1.2 Configuring workers . 39
8.1.2.1 --enable-nmaxcpus=<number> . 39
8.1.2.2 --disable-cpu . 39
8.1.2.3 --enable-maxcudadev=<number> . 39
8.1.2.4 --disable-cuda . 39
8.1.2.5 --with-cuda-dir=<path> . 40
8.1.2.6 --with-cuda-include-dir=<path> 40
8.1.2.7 --with-cuda-lib-dir=<path> . 40
8.1.2.8 --enable-maxopencldev=<number> 40
8.1.2.9 --disable-opencl . 40
8.1.2.10 --with-opencl-dir=<path> . 40
8.1.2.11 --with-opencl-include-dir=<path> 40
8.1.2.12 --with-opencl-lib-dir=<path> 40
8.1.2.13 --enable-gordon . 41
8.1.2.14 --with-gordon-dir=<path> . 41

8.1.3 Advanced configuration . 41
8.1.3.1 --enable-perf-debug . 41
8.1.3.2 --enable-model-debug . 41
8.1.3.3 --enable-stats . 41
8.1.3.4 --enable-maxbuffers=<nbuffers> 41
8.1.3.5 --enable-allocation-cache . 41
8.1.3.6 --enable-opengl-render . 41
8.1.3.7 --enable-blas-lib=<name> . 41
8.1.3.8 --with-magma=<path> . 41
8.1.3.9 --with-fxt=<path> . 42
8.1.3.10 --with-perf-model-dir=<dir> . 42
8.1.3.11 --with-mpicc=<path to mpicc> . 42
8.1.3.12 --with-goto-dir=<dir> . 42
8.1.3.13 --with-atlas-dir=<dir> . 42
8.1.3.14 --with-mkl-cflags=<cflags> . 42
8.1.3.15 --with-mkl-ldflags=<ldflags> 42

8.2 Execution configuration through environment variables 42
8.2.1 Configuring workers . 42

8.2.1.1 STARPU_NCPUS – Number of CPU workers 42
8.2.1.2 STARPU_NCUDA – Number of CUDA workers 43
8.2.1.3 STARPU_NOPENCL – Number of OpenCL workers 43
8.2.1.4 STARPU_NGORDON – Number of SPU workers (Cell) . . . 43
8.2.1.5 STARPU_WORKERS_CPUID – Bind workers to specific CPUs

. 43
8.2.1.6 STARPU_WORKERS_CUDAID – Select specific CUDA devices

. 43

iv StarPU Handbook

8.2.1.7 STARPU_WORKERS_OPENCLID – Select specific OpenCL
devices . 44

8.2.2 Configuring the Scheduling engine . 44
8.2.2.1 STARPU_SCHED – Scheduling policy 44
8.2.2.2 STARPU_CALIBRATE – Calibrate performance models . . 44
8.2.2.3 STARPU_PREFETCH – Use data prefetch 44
8.2.2.4 STARPU_SCHED_ALPHA – Computation factor 44
8.2.2.5 STARPU_SCHED_BETA – Communication factor 44

8.2.3 Miscellaneous and debug . 45
8.2.3.1 STARPU_SILENT – Disable verbose mode 45
8.2.3.2 STARPU_LOGFILENAME – Select debug file name 45
8.2.3.3 STARPU_FXT_PREFIX – FxT trace location 45
8.2.3.4 STARPU_LIMIT_GPU_MEM – Restrict memory size on the

GPUs . 45
8.2.3.5 STARPU_GENERATE_TRACE – Generate a Paje trace when

StarPU is shut down . 45

9 StarPU API . 47
9.1 Initialization and Termination . 47

9.1.1 starpu_init – Initialize StarPU . 47
9.1.2 struct starpu_conf – StarPU runtime configuration 47
9.1.3 starpu_conf_init – Initialize starpu conf structure 48
9.1.4 starpu_shutdown – Terminate StarPU 49

9.2 Workers’ Properties . 49
9.2.1 starpu_worker_get_count – Get the number of processing

units . 49
9.2.2 starpu_worker_get_count_by_type – Get the number of

processing units of a given type . 49
9.2.3 starpu_cpu_worker_get_count – Get the number of CPU

controlled by StarPU . 49
9.2.4 starpu_cuda_worker_get_count – Get the number of CUDA

devices controlled by StarPU . 49
9.2.5 starpu_opencl_worker_get_count – Get the number of

OpenCL devices controlled by StarPU . 50
9.2.6 starpu_spu_worker_get_count – Get the number of Cell

SPUs controlled by StarPU . 50
9.2.7 starpu_worker_get_id – Get the identifier of the current

worker . 50
9.2.8 starpu_worker_get_ids_by_type – Get the list of identifiers

of workers with a given type . 50
9.2.9 starpu_worker_get_devid – Get the device identifier of a

worker . 50
9.2.10 starpu_worker_get_type – Get the type of processing unit

associated to a worker . 50
9.2.11 starpu_worker_get_name – Get the name of a worker . . . 51
9.2.12 starpu_worker_get_memory_node – Get the memory node

of a worker . 51
9.3 Data Library . 51

v

9.3.1 starpu_malloc – Allocate data and pin it 51
9.3.2 starpu_access_mode – Data access mode 51
9.3.3 unsigned memory_node – Memory node 52
9.3.4 starpu_data_handle – StarPU opaque data handle 52
9.3.5 void *interface – StarPU data interface 52
9.3.6 starpu_data_register – Register a piece of data to StarPU

. 52
9.3.7 starpu_data_unregister – Unregister a piece of data from

StarPU . 53
9.3.8 starpu_data_invalidate – Invalidate all data replicates

. 53
9.3.9 starpu_data_acquire – Access registered data from the

application . 53
9.3.10 starpu_data_acquire_cb – Access registered data from the

application asynchronously . 53
9.3.11 starpu_data_release – Release registered data from the

application . 54
9.3.12 starpu_data_set_wt_mask – Set the Write-Through mask

. 54
9.3.13 starpu_data_prefetch_on_node – Prefetch data to a given

node . 54
9.4 Data Interfaces . 54

9.4.1 Variable Interface . 54
9.4.2 Vector Interface . 55
9.4.3 Matrix Interface . 55
9.4.4 3D Matrix Interface . 55
9.4.5 BCSR Interface for Sparse Matrices (Blocked Compressed

Sparse Row Representation) . 56
9.4.6 CSR Interface for Sparse Matrices (Compressed Sparse Row

Representation) . 56
9.5 Data Partition . 56

9.5.1 struct starpu_data_filter – StarPU filter structure 56
9.5.2 starpu data partition – Partition Data 57
9.5.3 starpu data unpartition – Unpartition data 57
9.5.4 starpu data get nb children . 57
9.5.5 starpu data get sub data . 58
9.5.6 Predefined filter functions . 58

9.5.6.1 Partitioning BCSR Data . 58
9.5.6.2 Partitioning BLAS interface . 58
9.5.6.3 Partitioning Vector Data . 59
9.5.6.4 Partitioning Block Data . 59

9.6 Codelets and Tasks . 59
9.7 Explicit Dependencies . 63

9.7.1 starpu_task_declare_deps_array – Declare task
dependencies . 63

9.7.2 starpu_tag_t – Task logical identifier . 64
9.7.3 starpu_tag_declare_deps – Declare the Dependencies of a

Tag . 64

vi StarPU Handbook

9.7.4 starpu_tag_declare_deps_array – Declare the
Dependencies of a Tag . 64

9.7.5 starpu_tag_wait – Block until a Tag is terminated 65
9.7.6 starpu_tag_wait_array – Block until a set of Tags is

terminated . 65
9.7.7 starpu_tag_remove – Destroy a Tag . 65
9.7.8 starpu_tag_notify_from_apps – Feed a Tag explicitly . . . 65

9.8 Implicit Data Dependencies . 65
9.8.1 starpu_data_set_default_sequential_consistency_flag

– Set default sequential consistency flag . 66
9.8.2 starpu_data_get_default_sequential_consistency_flag

– Get current default sequential consistency flag 66
9.8.3 starpu_data_set_sequential_consistency_flag – Set

data sequential consistency mode . 66
9.9 Performance Model API . 66

9.9.1 starpu_load_history_debug . 66
9.9.2 starpu_perfmodel_debugfilepath . 66
9.9.3 starpu_perfmodel_get_arch_name . 66
9.9.4 starpu_force_bus_sampling . 66

9.10 Profiling API . 67
9.10.1 starpu_profiling_status_set – Set current profiling

status . 67
9.10.2 starpu_profiling_status_get – Get current profiling

status . 67
9.10.3 struct starpu_task_profiling_info – Task profiling

information . 67
9.10.4 struct starpu_worker_profiling_info – Worker profiling

information . 67
9.10.5 starpu_worker_get_profiling_info – Get worker

profiling info . 68
9.10.6 struct starpu_bus_profiling_info – Bus profiling

information . 68
9.10.7 starpu_bus_get_count . 68
9.10.8 starpu_bus_get_id . 69
9.10.9 starpu_bus_get_src . 69
9.10.10 starpu_bus_get_dst . 69
9.10.11 starpu_timing_timespec_delay_us 69
9.10.12 starpu_timing_timespec_to_us . 69
9.10.13 starpu_bus_profiling_helper_display_summary 69
9.10.14 starpu_worker_profiling_helper_display_summary

. 69
9.11 CUDA extensions . 69

9.11.1 starpu_cuda_get_local_stream – Get current worker’s
CUDA stream . 69

9.11.2 starpu_helper_cublas_init – Initialize CUBLAS on every
CUDA device . 70

9.11.3 starpu_helper_cublas_shutdown – Deinitialize CUBLAS
on every CUDA device . 70

vii

9.12 OpenCL extensions . 70
9.12.1 Enabling OpenCL . 70
9.12.2 Compiling OpenCL kernels . 70

9.12.2.1 starpu_opencl_load_opencl_from_file – Compiling
OpenCL source code . 70

9.12.2.2 starpu_opencl_load_opencl_from_string –
Compiling OpenCL source code . 71

9.12.2.3 starpu_opencl_unload_opencl – Releasing OpenCL
code . 71

9.12.3 Loading OpenCL kernels . 71
9.12.3.1 starpu_opencl_load_kernel – Loading a kernel . . . 71
9.12.3.2 starpu_opencl_release_kernel – Releasing a kernel

. 71
9.12.4 OpenCL statistics . 71

9.12.4.1 starpu_opencl_collect_stats – Collect statistics on
a kernel execution . 71

9.13 Cell extensions . 71
9.14 Miscellaneous helpers . 71

9.14.1 starpu_data_cpy – Copy a data handle into another data
handle . 71

9.14.2 starpu_execute_on_each_worker – Execute a function on
a subset of workers . 72

10 Advanced Topics . 73
10.1 Defining a new data interface . 73

10.1.1 struct starpu_data_interface_ops_t – Per-interface
methods . 73

10.1.2 struct starpu_data_copy_methods – Per-interface data
transfer methods . 73

10.1.3 An example of data interface . 73
10.2 Defining a new scheduling policy . 73

10.2.1 struct starpu_sched_policy_s – Scheduler methods . . . 73
10.2.2 starpu_worker_set_sched_condition – Specify the

condition variable associated to a worker . 74
10.2.3 starpu_sched_set_min_priority . 74
10.2.4 starpu_sched_set_max_priority . 74
10.2.5 starpu_push_local_task . 75
10.2.6 Source code . 75

Appendix A Full source code for the ’Scaling a
Vector’ example . 77

A.1 Main application . 77
A.2 CPU Kernel . 79
A.3 CUDA Kernel . 79
A.4 OpenCL Kernel . 80

A.4.1 Invoking the kernel . 80
A.4.2 Source of the kernel . 81

viii StarPU Handbook

Function Index . 83

Preface 1

Preface

This manual documents the usage of StarPU version 0.9.1. It was last updated on 12 May
2011.

Chapter 1: Introduction to StarPU 3

1 Introduction to StarPU

1.1 Motivation

The use of specialized hardware such as accelerators or coprocessors offers an interesting
approach to overcome the physical limits encountered by processor architects. As a result,
many machines are now equipped with one or several accelerators (e.g. a GPU), in addition
to the usual processor(s). While a lot of efforts have been devoted to offload computation
onto such accelerators, very little attention as been paid to portability concerns on the one
hand, and to the possibility of having heterogeneous accelerators and processors to interact
on the other hand.

StarPU is a runtime system that offers support for heterogeneous multicore architectures,
it not only offers a unified view of the computational resources (i.e. CPUs and accelerators
at the same time), but it also takes care of efficiently mapping and executing tasks onto an
heterogeneous machine while transparently handling low-level issues such as data transfers
in a portable fashion.

1.2 StarPU in a Nutshell

From a programming point of view, StarPU is not a new language but a library that
executes tasks explicitly submitted by the application. The data that a task manipulates
are automatically transferred onto the accelerator so that the programmer does not have to
take care of complex data movements. StarPU also takes particular care of scheduling those
tasks efficiently and allows scheduling experts to implement custom scheduling policies in
a portable fashion.

1.2.1 Codelet and Tasks

One of the StarPU primary data structures is the codelet. A codelet describes a computa-
tional kernel that can possibly be implemented on multiple architectures such as a CPU, a
CUDA device or a Cell’s SPU.

Another important data structure is the task. Executing a StarPU task consists in
applying a codelet on a data set, on one of the architectures on which the codelet is imple-
mented. A task thus describes the codelet that it uses, but also which data are accessed,
and how they are accessed during the computation (read and/or write). StarPU tasks are
asynchronous: submitting a task to StarPU is a non-blocking operation. The task struc-
ture can also specify a callback function that is called once StarPU has properly executed
the task. It also contains optional fields that the application may use to give hints to the
scheduler (such as priority levels).

By default, task dependencies are inferred from data dependency (sequential coherence)
by StarPU. The application can however disable sequential coherency for some data, and
dependencies be expressed by hand. A task may be identified by a unique 64-bit number
chosen by the application which we refer as a tag. Task dependencies can be enforced by
hand either by the means of callback functions, by submitting other tasks, or by express-
ing dependencies between tags (which can thus correspond to tasks that have not been
submitted yet).

4 StarPU Handbook

1.2.2 StarPU Data Management Library

Because StarPU schedules tasks at runtime, data transfers have to be done automatically
and “just-in-time” between processing units, relieving the application programmer from
explicit data transfers. Moreover, to avoid unnecessary transfers, StarPU keeps data where
it was last needed, even if was modified there, and it allows multiple copies of the same
data to reside at the same time on several processing units as long as it is not modified.

1.2.3 Glossary

A codelet records pointers to various implementations of the same theoretical function.

A memory node can be either the main RAM or GPU-embedded memory.

A bus is a link between memory nodes.

A data handle keeps track of replicates of the same data (registered by the application)
over various memory nodes. The data management library manages keeping them coherent.

The home memory node of a data handle is the memory node from which the data was
registered (usually the main memory node).

A task represents a scheduled execution of a codelet on some data handles.

A tag is a rendez-vous point. Tasks typically have their own tag, and can depend on
other tags. The value is chosen by the application.

A worker execute tasks. There is typically one per CPU computation core and one per
accelerator (for which a whole CPU core is dedicated).

A driver drives a given kind of workers. There are currently CPU, CUDA, OpenCL and
Gordon drivers. They usually start several workers to actually drive them.

A performance model is a (dynamic or static) model of the performance of a given
codelet. Codelets can have execution time performance model as well as power consumption
performance models.

A data interface describes the layout of the data: for a vector, a pointer for the start,
the number of elements and the size of elements ; for a matrix, a pointer for the start, the
number of elements per row, the offset between rows, and the size of each element ; etc. To
access their data, codelet functions are given interfaces for the local memory node replicates
of the data handles of the scheduled task.

Partitioning data means dividing the data of a given data handle (called father) into a
series of children data handles which designate various portions of the former.

A filter is the function which computes children data handles from a father data handle,
and thus describes how the partitioning should be done (horizontal, vertical, etc.)

Acquiring a data handle can be done from the main application, to safely access the
data of a data handle from its home node, without having to unregister it.

1.2.4 Research Papers

Research papers about StarPU can be found at

http://runtime.bordeaux.inria.fr/Publis/Keyword/STARPU.html

Notably a good overview in the research report

http://hal.archives-ouvertes.fr/inria-00467677

Chapter 2: Installing StarPU 5

2 Installing StarPU

StarPU can be built and installed by the standard means of the GNU autotools. The
following chapter is intended to briefly remind how these tools can be used to install StarPU.

2.1 Downloading StarPU

2.1.1 Getting Sources

The simplest way to get StarPU sources is to download the latest official release tarball
from https://gforge.inria.fr/frs/?group_id=1570 , or the latest nightly snapshot
from http://starpu.gforge.inria.fr/testing/ . The following documents how to get
the very latest version from the subversion repository itself, it should be needed only if you
need the very latest changes (i.e. less than a day!)

The source code is managed by a Subversion server hosted by the InriaGforge. To get
the source code, you need:

• To install the client side of the software Subversion if it is not already available on
your system. The software can be obtained from http://subversion.tigris.org .
If you are running on Windows, you will probably prefer to use TortoiseSVN from
http://tortoisesvn.tigris.org/ .

• You can check out the project’s SVN repository through anonymous access. This will
provide you with a read access to the repository.

If you need to have write access on the StarPU project, you can also choose
to become a member of the project starpu. For this, you first need to get an
account to the gForge server. You can then send a request to join the project
(https://gforge.inria.fr/project/request.php?group_id=1570).

• More information on how to get a gForge account, to become a mem-
ber of a project, or on any other related task can be obtained from the
InriaGforge at https://gforge.inria.fr/. The most important thing
is to upload your public SSH key on the gForge server (see the FAQ at
http://siteadmin.gforge.inria.fr/FAQ.html#Q6 for instructions).

You can now check out the latest version from the Subversion server:

• using the anonymous access via svn:

% svn checkout svn://scm.gforge.inria.fr/svn/starpu/trunk

• using the anonymous access via https:

% svn checkout --username anonsvn https://scm.gforge.inria.fr/svn/starpu/trunk

The password is anonsvn.

• using your gForge account

% svn checkout svn+ssh://<login>@scm.gforge.inria.fr/svn/starpu/trunk

The following step requires the availability of autoconf and automake to generate the
./configure script. This is done by calling ./autogen.sh. The required version for
autoconf is 2.60 or higher. You will also need makeinfo.

6 StarPU Handbook

% ./autogen.sh

If the autotools are not available on your machine or not recent enough, you can choose
to download the latest nightly tarball, which is provided with a configure script.

% wget http://starpu.gforge.inria.fr/testing/starpu-nightly-latest.tar.gz

2.1.2 Optional dependencies

The topology discovery library, hwloc, is not mandatory to use StarPU but strongly recom-
mended. It allows to increase performance, and to perform some topology aware scheduling.

hwloc is available in major distributions and for most OSes and can be downloaded from
http://www.open-mpi.org/software/hwloc.

2.2 Configuration of StarPU

2.2.1 Generating Makefiles and configuration scripts

This step is not necessary when using the tarball releases of StarPU. If you are using the
source code from the svn repository, you first need to generate the configure scripts and the
Makefiles.

% ./autogen.sh

2.2.2 Running the configuration

% ./configure

Details about options that are useful to give to ./configure are given in Section 8.1
[Compilation configuration], page 39.

2.3 Building and Installing StarPU

2.3.1 Building

% make

2.3.2 Sanity Checks

In order to make sure that StarPU is working properly on the system, it is also possible to
run a test suite.

% make check

2.3.3 Installing

In order to install StarPU at the location that was specified during configuration:

% make install

Chapter 3: Using StarPU 7

3 Using StarPU

3.1 Setting flags for compiling and linking applications

Compiling and linking an application against StarPU may require to use specific flags or
libraries (for instance CUDA or libspe2). To this end, it is possible to use the pkg-config

tool.

If StarPU was not installed at some standard location, the path of StarPU’s library must
be specified in the PKG_CONFIG_PATH environment variable so that pkg-config can find it.
For example if StarPU was installed in $prefix_dir:

% PKG_CONFIG_PATH=$PKG_CONFIG_PATH:$prefix_dir/lib/pkgconfig

The flags required to compile or link against StarPU are then accessible with the following
commands:

% pkg-config --cflags libstarpu # options for the compiler

% pkg-config --libs libstarpu # options for the linker

3.2 Running a basic StarPU application

Basic examples using StarPU have been built in the directory $prefix_

dir/lib/starpu/examples/. You can for example run the example vector_scal.

% $prefix_dir/lib/starpu/examples/vector_scal

BEFORE : First element was 1.000000

AFTER First element is 3.140000

%

When StarPU is used for the first time, the directory $HOME/.starpu/ is created, per-
formance models will be stored in that directory.

Please note that buses are benchmarked when StarPU is launched for the first time.
This may take a few minutes, or less if hwloc is installed. This step is done only once per
user and per machine.

3.3 Kernel threads started by StarPU

TODO: StarPU starts one thread per CPU core and binds them there, uses one of them
per GPU. The application is not supposed to do computations in its own threads. TODO:
add a StarPU function to bind an application thread (e.g. the main thread) to a dedicated
core (and thus disable the corresponding StarPU CPU worker).

3.4 Using accelerators

When both CUDA and OpenCL drivers are enabled, StarPU will launch an OpenCL worker
for NVIDIA GPUs only if CUDA is not already running on them. This design choice was
necessary as OpenCL and CUDA can not run at the same time on the same NVIDIA GPU,
as there is currently no interoperability between them.

Details on how to specify devices running OpenCL and the ones running CUDA are
given in Section 9.12.1 [Enabling OpenCL], page 70.

Chapter 4: Basic Examples 9

4 Basic Examples

4.1 Compiling and linking options

Let’s suppose StarPU has been installed in the directory $STARPU_DIR. As explained in
Section 3.1 [Setting flags for compiling and linking applications], page 7, the variable PKG_
CONFIG_PATH needs to be set. It is also necessary to set the variable LD_LIBRARY_PATH to
locate dynamic libraries at runtime.

% PKG_CONFIG_PATH=$STARPU_DIR/lib/pkgconfig:$PKG_CONFIG_PATH

% LD_LIBRARY_PATH=$STARPU_DIR/lib:$LD_LIBRARY_PATH

The Makefile could for instance contain the following lines to define which options must
be given to the compiler and to the linker:� �
CFLAGS += $$(pkg-config --cflags libstarpu)

LDFLAGS += $$(pkg-config --libs libstarpu)
 	
4.2 Hello World

In this section, we show how to implement a simple program that submits a task to StarPU.

4.2.1 Required Headers

The starpu.h header should be included in any code using StarPU.� �
#include <starpu.h>
 	
4.2.2 Defining a Codelet� �
struct params {

int i;

float f;

};

void cpu_func(void *buffers[], void *cl_arg)

{

struct params *params = cl_arg;

printf("Hello world (params = {%i, %f})\n", params->i, params->f);

}

starpu_codelet cl =

{

.where = STARPU_CPU,

.cpu_func = cpu_func,

.nbuffers = 0

};
 	
A codelet is a structure that represents a computational kernel. Such a codelet may

contain an implementation of the same kernel on different architectures (e.g. CUDA, Cell’s
SPU, x86, ...).

10 StarPU Handbook

The nbuffers field specifies the number of data buffers that are manipulated by the
codelet: here the codelet does not access or modify any data that is controlled by our data
management library. Note that the argument passed to the codelet (the cl_arg field of
the starpu_task structure) does not count as a buffer since it is not managed by our data
management library, but just contain trivial parameters.

We create a codelet which may only be executed on the CPUs. The where field is a
bitmask that defines where the codelet may be executed. Here, the STARPU_CPU value means
that only CPUs can execute this codelet (see Section 9.6 [Codelets and Tasks], page 59 for
more details on this field). When a CPU core executes a codelet, it calls the cpu_func

function, which must have the following prototype:

void (*cpu_func)(void *buffers[], void *cl_arg);

In this example, we can ignore the first argument of this function which gives a descrip-
tion of the input and output buffers (e.g. the size and the location of the matrices) since
there is none. The second argument is a pointer to a buffer passed as an argument to the
codelet by the means of the cl_arg field of the starpu_task structure.

Be aware that this may be a pointer to a copy of the actual buffer, and not the pointer
given by the programmer: if the codelet modifies this buffer, there is no guarantee that the
initial buffer will be modified as well: this for instance implies that the buffer cannot be
used as a synchronization medium. If synchronization is needed, data has to be registered
to StarPU, see Section 4.3 [Scaling a Vector], page 12.

Chapter 4: Basic Examples 11

4.2.3 Submitting a Task� �
void callback_func(void *callback_arg)

{

printf("Callback function (arg %x)\n", callback_arg);

}

int main(int argc, char **argv)

{

/* initialize StarPU */

starpu_init(NULL);

struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined above */

struct params params = { 1, 2.0f };

task->cl_arg = ¶ms;

task->cl_arg_size = sizeof(params);

task->callback_func = callback_func;

task->callback_arg = 0x42;

/* starpu task submit will be a blocking call */

task->synchronous = 1;

/* submit the task to StarPU */

starpu_task_submit(task);

/* terminate StarPU */

starpu_shutdown();

return 0;

}
 	
Before submitting any tasks to StarPU, starpu_init must be called. The NULL ar-

gument specifies that we use default configuration. Tasks cannot be submitted after the
termination of StarPU by a call to starpu_shutdown.

In the example above, a task structure is allocated by a call to starpu_task_create.
This function only allocates and fills the corresponding structure with the default settings
(see Section 9.6 [Codelets and Tasks], page 59), but it does not submit the task to StarPU.

The cl field is a pointer to the codelet which the task will execute: in other words, the
codelet structure describes which computational kernel should be offloaded on the different
architectures, and the task structure is a wrapper containing a codelet and the piece of data
on which the codelet should operate.

The optional cl_arg field is a pointer to a buffer (of size cl_arg_size) with some
parameters for the kernel described by the codelet. For instance, if a codelet implements a
computational kernel that multiplies its input vector by a constant, the constant could be
specified by the means of this buffer, instead of registering it as a StarPU data. It must
however be noted that StarPU avoids making copy whenever possible and rather passes
the pointer as such, so the buffer which is pointed at must kept allocated until the task

12 StarPU Handbook

terminates, and if several tasks are submitted with various parameters, each of them must
be given a pointer to their own buffer.

Once a task has been executed, an optional callback function is be called. While the
computational kernel could be offloaded on various architectures, the callback function is
always executed on a CPU. The callback_arg pointer is passed as an argument of the
callback. The prototype of a callback function must be:

void (*callback_function)(void *);

If the synchronous field is non-zero, task submission will be synchronous: the starpu_
task_submit function will not return until the task was executed. Note that the starpu_

shutdown method does not guarantee that asynchronous tasks have been executed before it
returns, starpu_task_wait_for_all can be used to that effect, or data can be unregistered
(starpu_data_unregister(vector_handle);), which will implicitly wait for all the tasks
scheduled to work on it, unless explicitly disabled thanks to starpu_data_set_default_

sequential_consistency_flag or starpu_data_set_sequential_consistency_flag.

4.2.4 Execution of Hello World
% make hello_world

cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) hello_world.c -o hello_world

% ./hello_world

Hello world (params = {1, 2.000000})

Callback function (arg 42)

4.3 Manipulating Data: Scaling a Vector

The previous example has shown how to submit tasks. In this section, we show how StarPU
tasks can manipulate data. The full source code for this example is given in Appendix A
[Full source code for the ’Scaling a Vector’ example], page 77.

4.3.1 Source code of Vector Scaling

Programmers can describe the data layout of their application so that StarPU is responsi-
ble for enforcing data coherency and availability across the machine. Instead of handling
complex (and non-portable) mechanisms to perform data movements, programmers only
declare which piece of data is accessed and/or modified by a task, and StarPU makes sure
that when a computational kernel starts somewhere (e.g. on a GPU), its data are available
locally.

Before submitting those tasks, the programmer first needs to declare the different pieces
of data to StarPU using the starpu_*_data_register functions. To ease the development
of applications for StarPU, it is possible to describe multiple types of data layout. A type
of data layout is called an interface. There are different predefined interfaces available in
StarPU: here we will consider the vector interface.

The following lines show how to declare an array of NX elements of type float using the
vector interface:

Chapter 4: Basic Examples 13

� �
float vector[NX];

starpu_data_handle vector_handle;

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,

sizeof(vector[0]));
 	
The first argument, called the data handle, is an opaque pointer which designates the

array in StarPU. This is also the structure which is used to describe which data is used by
a task. The second argument is the node number where the data originally resides. Here it
is 0 since the vector array is in the main memory. Then comes the pointer vector where
the data can be found in main memory, the number of elements in the vector and the size
of each element. The following shows how to construct a StarPU task that will manipulate
the vector and a constant factor.� �
float factor = 3.14;

struct starpu_task *task = starpu_task_create();

task->cl = &cl; /* Pointer to the codelet defined below */

task->buffers[0].handle = vector_handle; /* First parameter of the codelet */

task->buffers[0].mode = STARPU_RW;

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);

task->synchronous = 1;

starpu_task_submit(task);
 	
Since the factor is a mere constant float value parameter, it does not need a preliminary

registration, and can just be passed through the cl_arg pointer like in the previous example.
The vector parameter is described by its handle. There are two fields in each element of
the buffers array. handle is the handle of the data, and mode specifies how the kernel will
access the data (STARPU_R for read-only, STARPU_W for write-only and STARPU_RW for read
and write access).

The definition of the codelet can be written as follows:� �
void scal_cpu_func(void *buffers[], void *cl_arg)

{

unsigned i;

float *factor = cl_arg;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* CPU copy of the vector pointer */

float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);

for (i = 0; i < n; i++)

val[i] *= *factor;

}

starpu_codelet cl = {

.where = STARPU_CPU,

.cpu_func = scal_cpu_func,

.nbuffers = 1

};
 	

14 StarPU Handbook

The first argument is an array that gives a description of all the buffers passed in the
task->buffers array. The size of this array is given by the nbuffers field of the codelet
structure. For the sake of genericity, this array contains pointers to the different interfaces
describing each buffer. In the case of the vector interface, the location of the vector (resp.
its length) is accessible in the ptr (resp. nx) of this array. Since the vector is accessed in a
read-write fashion, any modification will automatically affect future accesses to this vector
made by other tasks.

The second argument of the scal_cpu_func function contains a pointer to the parame-
ters of the codelet (given in task->cl_arg), so that we read the constant factor from this
pointer.

4.3.2 Execution of Vector Scaling
% make vector_scal

cc $(pkg-config --cflags libstarpu) $(pkg-config --libs libstarpu) vector_scal.c -

o vector_scal

% ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

4.4 Vector Scaling on an Hybrid CPU/GPU Machine

Contrary to the previous examples, the task submitted in this example may not only be
executed by the CPUs, but also by a CUDA device.

4.4.1 Definition of the CUDA Kernel

The CUDA implementation can be written as follows. It needs to be compiled with a
CUDA compiler such as nvcc, the NVIDIA CUDA compiler driver. It must be noted that
the vector pointer returned by STARPU VECTOR GET PTR is here a pointer in GPU
memory, so that it can be passed as such to the vector_mult_cuda kernel call.

Chapter 4: Basic Examples 15

� �
#include <starpu.h>

static __global__ void vector_mult_cuda(float *val, unsigned n,

float factor)

{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n)

val[i] *= factor;

}

extern "C" void scal_cuda_func(void *buffers[], void *_args)

{

float *factor = (float *)_args;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* CUDA copy of the vector pointer */

float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);

unsigned threads_per_block = 64;

unsigned nblocks = (n + threads_per_block-1) / threads_per_block;

vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *fac-

tor);

cudaStreamSynchronize(starpu_cuda_get_local_stream());

}
 	

4.4.2 Definition of the OpenCL Kernel

The OpenCL implementation can be written as follows. StarPU provides tools to compile
a OpenCL kernel stored in a file.� �
__kernel void vector_mult_opencl(__global float* val, int nx, float factor)

{

const int i = get_global_id(0);

if (i < nx) {

val[i] *= factor;

}

}
 	

Similarly to CUDA, the pointer returned by STARPU_VECTOR_GET_PTR is here a device
pointer, so that it is passed as such to the OpenCL kernel.

16 StarPU Handbook

� �
#include <starpu.h>

#include <starpu_opencl.h>

extern struct starpu_opencl_program programs;

void scal_opencl_func(void *buffers[], void *_args)

{

float *factor = _args;

int id, devid, err;

cl_kernel kernel;

cl_command_queue queue;

cl_event event;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* OpenCL copy of the vector pointer */

cl_mem val = (cl_mem) STARPU_VECTOR_GET_PTR(buffers[0]);

id = starpu_worker_get_id();

devid = starpu_worker_get_devid(id);

err = starpu_opencl_load_kernel(&kernel, &queue, &programs,

"vector_mult_opencl", devid); /* Name of the codelet defined above */

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

err = clSetKernelArg(kernel, 0, sizeof(val), &val);

err |= clSetKernelArg(kernel, 1, sizeof(n), &n);

err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);

if (err) STARPU_OPENCL_REPORT_ERROR(err);

{

size_t global=1;

size_t local=1;

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0, NULL, &event);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}

clFinish(queue);

starpu_opencl_collect_stats(event);

clReleaseEvent(event);

starpu_opencl_release_kernel(kernel);

}
 	

4.4.3 Definition of the Main Code

The CPU implementation is the same as in the previous section.

Here is the source of the main application. You can notice the value of the field where for
the codelet. We specify STARPU_CPU|STARPU_CUDA|STARPU_OPENCL to indicate to StarPU
that the codelet can be executed either on a CPU or on a CUDA or an OpenCL device.

Chapter 4: Basic Examples 17

� �
#include <starpu.h>

#define NX 2048

extern void scal_cuda_func(void *buffers[], void *_args);

extern void scal_cpu_func(void *buffers[], void *_args);

extern void scal_opencl_func(void *buffers[], void *_args);

/* Definition of the codelet */

static starpu_codelet cl = {

.where = STARPU_CPU|STARPU_CUDA|STARPU_OPENCL; /* It can be executed on a CPU, */

/* on a CUDA device, or on an OpenCL device */

.cuda_func = scal_cuda_func;

.cpu_func = scal_cpu_func;

.opencl_func = scal_opencl_func;

.nbuffers = 1;

}

#ifdef STARPU_USE_OPENCL

/* The compiled version of the OpenCL program */

struct starpu_opencl_program programs;

#endif

int main(int argc, char **argv)

{

float *vector;

int i, ret;

float factor=3.0;

struct starpu_task *task;

starpu_data_handle vector_handle;

starpu_init(NULL); /* Initialising StarPU */

#ifdef STARPU_USE_OPENCL

starpu_opencl_load_opencl_from_file(

"examples/basic_examples/vector_scal_opencl_codelet.cl",

&programs, NULL);

#endif

vector = malloc(NX*sizeof(vector[0]));

assert(vector);

for(i=0 ; i<NX ; i++) vector[i] = i;
 	� �
/* Registering data within StarPU */

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,

NX, sizeof(vector[0]));

/* Definition of the task */

task = starpu_task_create();

task->cl = &cl;

task->buffers[0].handle = vector_handle;

task->buffers[0].mode = STARPU_RW;

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);
 	

18 StarPU Handbook

� �
/* Submitting the task */

ret = starpu_task_submit(task);

if (ret == -ENODEV) {

fprintf(stderr, "No worker may execute this task\n");

return 1;

}

/* Waiting for its termination */

starpu_task_wait_for_all();

/* Update the vector in RAM */

starpu_data_acquire(vector_handle, STARPU_R);
 	� �
/* Access the data */

for(i=0 ; i<NX; i++) {

fprintf(stderr, "%f ", vector[i]);

}

fprintf(stderr, "\n");

/* Release the RAM view of the data before unregistering it and shutting down StarPU */

starpu_data_release(vector_handle);

starpu_data_unregister(vector_handle);

starpu_shutdown();

return 0;

}
 	
4.4.4 Execution of Hybrid Vector Scaling

The Makefile given at the beginning of the section must be extended to give the
rules to compile the CUDA source code. Note that the source file of the OpenCL
kernel does not need to be compiled now, it will be compiled at run-time when
calling the function starpu_opencl_load_opencl_from_file() (see Section 9.12.2.1
[starpu opencl load opencl from file], page 70).� �
CFLAGS += $(shell pkg-config --cflags libstarpu)

LDFLAGS += $(shell pkg-config --libs libstarpu)

CC = gcc

vector_scal: vector_scal.o vector_scal_cpu.o vector_scal_cuda.o vector_scal_opencl.o

%.o: %.cu

nvcc $(CFLAGS) $< -c $

clean:

rm -f vector_scal *.o
 	
% make

and to execute it, with the default configuration:

% ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

or for example, by disabling CPU devices:

% STARPU_NCPUS=0 ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

Chapter 4: Basic Examples 19

or by disabling CUDA devices (which may permit to enable the use of OpenCL, see
Section 3.4 [Using accelerators], page 7):

% STARPU_NCUDA=0 ./vector_scal

0.000000 3.000000 6.000000 9.000000 12.000000

4.5 Task and Worker Profiling

A full example showing how to use the profiling API is available in the StarPU sources in
the directory examples/profiling/.� �
struct starpu_task *task = starpu_task_create();

task->cl = &cl;

task->synchronous = 1;

/* We will destroy the task structure by hand so that we can

* query the profiling info before the task is destroyed. */

task->destroy = 0;

/* Submit and wait for completion (since synchronous was set to 1) */

starpu_task_submit(task);

/* The task is finished, get profiling information */

struct starpu_task_profiling_info *info = task->profiling_info;

/* How much time did it take before the task started ? */

double delay += starpu_timing_timespec_delay_us(&info->submit_time, &info->start_time);

/* How long was the task execution ? */

double length += starpu_timing_timespec_delay_us(&info->start_time, &info->end_time);

/* We don’t need the task structure anymore */

starpu_task_destroy(task);
 	

20 StarPU Handbook

� �
/* Display the occupancy of all workers during the test */

int worker;

for (worker = 0; worker < starpu_worker_get_count(); worker++)

{

struct starpu_worker_profiling_info worker_info;

int ret = starpu_worker_get_profiling_info(worker, &worker_info);

STARPU_ASSERT(!ret);

double total_time = starpu_timing_timespec_to_us(&worker_info.total_time);

double executing_time = starpu_timing_timespec_to_us(&worker_info.executing_time);

double sleeping_time = starpu_timing_timespec_to_us(&worker_info.sleeping_time);

float executing_ratio = 100.0*executing_time/total_time;

float sleeping_ratio = 100.0*sleeping_time/total_time;

char workername[128];

starpu_worker_get_name(worker, workername, 128);

fprintf(stderr, "Worker %s:\n", workername);

fprintf(stderr, "\ttotal time : %.2lf ms\n", total_time*1e-3);

fprintf(stderr, "\texec time : %.2lf ms (%.2f %%)\n", executing_time*1e-3,

executing_ratio);

fprintf(stderr, "\tblocked time : %.2lf ms (%.2f %%)\n", sleeping_time*1e-3,

sleeping_ratio);

}
 	

4.6 Partitioning Data

An existing piece of data can be partitioned in sub parts to be used by different tasks, for
instance:� �
int vector[NX];

starpu_data_handle handle;

/* Declare data to StarPU */

starpu_vector_data_register(&handle, 0, (uintptr_t)vector, NX, sizeof(vector[0]));

/* Partition the vector in PARTS sub-vectors */

starpu_filter f =

{

.filter_func = starpu_block_filter_func_vector,

.nchildren = PARTS,

.get_nchildren = NULL,

.get_child_ops = NULL

};

starpu_data_partition(handle, &f);
 	

Chapter 4: Basic Examples 21

� �
/* Submit a task on each sub-vector */

for (i=0; i<starpu_data_get_nb_children(handle); i++) {

/* Get subdata number i (there is only 1 dimension) */

starpu_data_handle sub_handle = starpu_data_get_sub_data(handle, 1, i);

struct starpu_task *task = starpu_task_create();

task->buffers[0].handle = sub_handle;

task->buffers[0].mode = STARPU_RW;

task->cl = &cl;

task->synchronous = 1;

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);

starpu_task_submit(task);

}
 	
Partitioning can be applied several times, see examples/basic_examples/mult.c and

examples/filters/.

4.7 Performance model example

To achieve good scheduling, StarPU scheduling policies need to be able to estimate in
advance the duration of a task. This is done by giving to codelets a performance model.
There are several kinds of performance models.

• Providing an estimation from the application itself (STARPU_COMMON model type
and cost_model field), see for instance examples/common/blas_model.h and
examples/common/blas_model.c. It can also be provided for each architecture
(STARPU_PER_ARCH model type and per_arch field)

• Measured at runtime (STARPU HISTORY BASED model type). This assumes that
for a given set of data input/output sizes, the performance will always be about the
same. This is very true for regular kernels on GPUs for instance (<0.1% error), and just
a bit less true on CPUs (~=1% error). This also assumes that there are few different sets
of data input/output sizes. StarPU will then keep record of the average time of previous
executions on the various processing units, and use it as an estimation. History is done
per task size, by using a hash of the input and ouput sizes as an index. It will also save
it in ~/.starpu/sampling/codelets for further executions, and can be observed by
using the starpu_perfmodel_display command. The models are indexed by machine
name. To share the models between machines (e.g. for a homogeneous cluster), use
export STARPU_HOSTNAME=some_global_name. The following is a small code example.� �
static struct starpu_perfmodel_t mult_perf_model = {

.type = STARPU_HISTORY_BASED,

.symbol = "mult_perf_model"

};

starpu_codelet cl = {

.where = STARPU_CPU,

.cpu_func = cpu_mult,

.nbuffers = 3,

/* for the scheduling policy to be able to use performance models */

.model = &mult_perf_model

};
 	

22 StarPU Handbook

• Measured at runtime and refined by regression (STARPU REGRESSION * BASED
model type). This still assumes performance regularity, but can work with
various data input sizes, by applying regression over observed execution
times. STARPU REGRESSION BASED uses an a*n^b regression form,
STARPU NL REGRESSION BASED uses an a*n^b+c (more precise than
STARPU REGRESSION BASED, but costs a lot more to compute)

• Provided explicitly by the application (STARPU PER ARCH model type): the .per_
arch[i].cost_model fields have to be filled with pointers to functions which return
the expected duration of the task in micro-seconds, one per architecture.

How to use schedulers which can benefit from such performance model is explained in
Section 5.4 [Task scheduling policy], page 25.

The same can be done for task power consumption estimation, by setting the power_

model field the same way as the model field. Note: for now, the application has to give to
the power consumption performance model a name which is different from the execution
time performance model.

4.8 Theoretical lower bound on execution time

For kernels with history-based performance models, StarPU can very easily provide a the-
oretical lower bound for the execution time of a whole set of tasks. See for instance
examples/lu/lu_example.c: before submitting tasks, call starpu_bound_start, and after
complete execution, call starpu_bound_stop. starpu_bound_print_lp or starpu_bound_
print_mps can then be used to output a Linear Programming problem corresponding to the
schedule of your tasks. Run it through lp_solve or any other linear programming solver,
and that will give you a lower bound for the total execution time of your tasks. If StarPU
was compiled with the glpk library installed, starpu_bound_compute can be used to solve
it immediately and get the optimized minimum. Its integer parameter allows to decide
whether integer resolution should be computed and returned.

The deps parameter tells StarPU whether to take tasks and implicit data dependencies
into account. It must be understood that the linear programming problem size is quadratic
with the number of tasks and thus the time to solve it will be very long, it could be minutes
for just a few dozen tasks. You should probably use lp_solve -timeout 1 test.pl -wmps

test.mps to convert the problem to MPS format and then use a better solver, glpsol might
be better than lp_solve for instance (the --pcost option may be useful), but sometimes
doesn’t manage to converge. cbc might look slower, but it is parallel. Be sure to try at least
all the -B options of lp_solve. For instance, we often just use lp_solve -cc -B1 -Bb -Bg

-Bp -Bf -Br -BG -Bd -Bs -BB -Bo -Bc -Bi , and the -gr option can also be quite useful.

Setting deps to 0 will only take into account the actual computations on processing
units. It however still properly takes into account the varying performances of kernels and
processing units, which is quite more accurate than just comparing StarPU performances
with the fastest of the kernels being used.

The prio parameter tells StarPU whether to simulate taking into account the priorities
as the StarPU scheduler would, i.e. schedule prioritized tasks before less prioritized tasks,
to check to which extend this results to a less optimal solution. This increases even more
computation time.

Chapter 4: Basic Examples 23

Note that for simplicity, all this however doesn’t take into account data transfers, which
are assumed to be completely overlapped.

4.9 Insert Task Utility

StarPU provides the wrapper function starpu_insert_task to ease the creation and sub-
mission of tasks.

[Function]int starpu_insert_task (starpu codelet *cl , ...)
Create and submit a task corresponding to cl with the following arguments. The
argument list must be zero-terminated.

The arguments following the codelets can be of the following types:

• STARPU_R, STARPU_W, STARPU_RW, STARPU_SCRATCH, STARPU_REDUX an access
mode followed by a data handle;

• STARPU_VALUE followed by a pointer to a constant value and the size of the
constant;

• STARPU_CALLBACK followed by a pointer to a callback function;

• STARPU_CALLBACK_ARG followed by a pointer to be given as an argument to the
callback function;

• STARPU_PRIORITY followed by a integer defining a priority level.

Parameters to be passed to the codelet implementation are defined through the type
STARPU_VALUE. The function starpu_unpack_cl_args must be called within the
codelet implementation to retrieve them.

Here the implementation of the codelet:

void func_cpu(void *descr[], void *_args)

{

int *x0 = (int *)STARPU_VARIABLE_GET_PTR(descr[0]);

float *x1 = (float *)STARPU_VARIABLE_GET_PTR(descr[1]);

int ifactor;

float ffactor;

starpu_unpack_cl_args(_args, &ifactor, &ffactor);

*x0 = *x0 * ifactor;

*x1 = *x1 * ffactor;

}

starpu_codelet mycodelet = {

.where = STARPU_CPU,

.cpu_func = func_cpu,

.nbuffers = 2

};

And the call to the starpu_insert_task wrapper:

starpu_insert_task(&mycodelet,

STARPU_VALUE, &ifactor, sizeof(ifactor),

STARPU_VALUE, &ffactor, sizeof(ffactor),

STARPU_RW, data_handles[0], STARPU_RW, data_handles[1],

0);

The call to starpu_insert_task is equivalent to the following code:

24 StarPU Handbook

struct starpu_task *task = starpu_task_create();

task->cl = &mycodelet;

task->buffers[0].handle = data_handles[0];

task->buffers[0].mode = STARPU_RW;

task->buffers[1].handle = data_handles[1];

task->buffers[1].mode = STARPU_RW;

char *arg_buffer;

size_t arg_buffer_size;

starpu_pack_cl_args(&arg_buffer, &arg_buffer_size,

STARPU_VALUE, &ifactor, sizeof(ifactor),

STARPU_VALUE, &ffactor, sizeof(ffactor),

0);

task->cl_arg = arg_buffer;

task->cl_arg_size = arg_buffer_size;

int ret = starpu_task_submit(task);

4.10 Debugging

StarPU provides several tools to help debugging aplications. Execution traces can be gen-
erated and displayed graphically, see Section 6.2.1 [Generating traces], page 30. Some gdb
helpers are also provided to show the whole StarPU state:

(gdb) source tools/gdbinit

(gdb) help starpu

4.11 More examples

More examples are available in the StarPU sources in the examples/ directory. Simple
examples include:

incrementer/:
Trivial incrementation test.

basic_examples/:
Simple documented Hello world (as shown in Section 4.2 [Hello World],
page 9), vector/scalar product (as shown in Section 4.4 [Vector Scaling on an
Hybrid CPU/GPU Machine], page 14), matrix product examples (as shown
in Section 4.7 [Performance model example], page 21), an example using
the blocked matrix data interface, and an example using the variable data
interface.

matvecmult/:
OpenCL example from NVidia, adapted to StarPU.

axpy/: AXPY CUBLAS operation adapted to StarPU.

fortran/: Example of Fortran bindings.

More advanced examples include:

filters/: Examples using filters, as shown in Section 4.6 [Partitioning Data], page 20.

lu/: LU matrix factorization, see for instance xlu_implicit.c

cholesky/:
Cholesky matrix factorization, see for instance cholesky_implicit.c.

Chapter 5: How to optimize performance with StarPU 25

5 How to optimize performance with StarPU

TODO: improve!

Simply encapsulating application kernels into tasks already permits to seamlessly support
CPU and GPUs at the same time. To achieve good performance, a few additional changes
are needed.

5.1 Data management

When the application allocates data, whenever possible it should use the starpu_malloc

function, which will ask CUDA or OpenCL to make the allocation itself and pin the cor-
responding allocated memory. This is needed to permit asynchronous data transfer, i.e.
permit data transfer to overlap with computations.

By default, StarPU leaves replicates of data wherever they were used, in case they will
be re-used by other tasks, thus saving the data transfer time. When some task modifies
some data, all the other replicates are invalidated, and only the processing unit which ran
that task will have a valid replicate of the data. If the application knows that this data will
not be re-used by further tasks, it should advise StarPU to immediately replicate it to a
desired list of memory nodes (given through a bitmask). This can be understood like the
write-through mode of CPU caches.

starpu_data_set_wt_mask(img_handle, 1<<0);

will for instance request to always transfer a replicate into the main memory (node 0),
as bit 0 of the write-through bitmask is being set.

5.2 Task submission

To let StarPU make online optimizations, tasks should be submitted asynchronously as
much as possible. Ideally, all the tasks should be submitted, and mere calls to starpu_

task_wait_for_all or starpu_data_unregister be done to wait for termination. StarPU
will then be able to rework the whole schedule, overlap computation with communication,
manage accelerator local memory usage, etc.

5.3 Task priorities

By default, StarPU will consider the tasks in the order they are submitted by the application.
If the application programmer knows that some tasks should be performed in priority (for
instance because their output is needed by many other tasks and may thus be a bottleneck
if not executed early enough), the priority field of the task structure should be set to
transmit the priority information to StarPU.

5.4 Task scheduling policy

By default, StarPU uses the eager simple greedy scheduler. This is because it provides
correct load balance even if the application codelets do not have performance models. If your
application codelets have performance models (see Section 4.7 [Performance model example],
page 21 for examples showing how to do it), you should change the scheduler thanks to the
STARPU_SCHED environment variable. For instance export STARPU_SCHED=dmda . Use help
to get the list of available schedulers.

26 StarPU Handbook

The eager scheduler uses a central task queue, from which workers draw tasks to work
on. This however does not permit to prefetch data since the scheduling decision is taken
late. If a task has a non-0 priority, it is put at the front of the queue.

The prio scheduler also uses a central task queue, but sorts tasks by priority (between
-5 and 5).

The random scheduler distributes tasks randomly according to assumed worker overall
performance.

The ws (work stealing) scheduler schedules tasks on the local worker by default. When
a worker becomes idle, it steals a task from the most loaded worker.

The dm (deque model) scheduler uses task execution performance models into account
to perform an HEFT-similar scheduling strategy: it schedules tasks where their termination
time will be minimal.

The dmda (deque model data aware) scheduler is similar to dm, it also takes into account
data transfer time.

The dmdar (deque model data aware ready) scheduler is similar to dmda, it also sorts
tasks on per-worker queues by number of already-available data buffers.

The dmdas (deque model data aware sorted) scheduler is similar to dmda, it also supports
arbitrary priority values.

The heft (HEFT) scheduler is similar to dmda, it also supports task bundles.

The pheft (parallel HEFT) scheduler is similar to heft, it also supports parallel tasks
(still experimental).

The pgreedy (parallel greedy) scheduler is similar to greedy, it also supports parallel
tasks (still experimental).

5.5 Performance model calibration

Most schedulers are based on an estimation of codelet duration on each kind of process-
ing unit. For this to be possible, the application programmer needs to configure a per-
formance model for the codelets of the application (see Section 4.7 [Performance model
example], page 21 for instance). History-based performance models use on-line calibra-
tion. StarPU will automatically calibrate codelets which have never been calibrated yet,
and save the result in ~/.starpu/sampling/codelets. The models are indexed by ma-
chine name. To share the models between machines (e.g. for a homogeneous cluster), use
export STARPU_HOSTNAME=some_global_name. To force continuing calibration, use export
STARPU_CALIBRATE=1 . This may be necessary if your application has not-so-stable per-
formance. Details on the current performance model status can be obtained from the
starpu_perfmodel_display command: the -l option lists the available performance mod-
els, and the -s option permits to choose the performance model to be displayed. The result
looks like:

$ starpu_perfmodel_display -s starpu_dlu_lu_model_22

performance model for cpu

hash size mean dev n

5c6c3401 1572864 1.216300e+04 2.277778e+03 1240

Chapter 5: How to optimize performance with StarPU 27

Which shows that for the LU 22 kernel with a 1.5MiB matrix, the average execution
time on CPUs was about 12ms, with a 2ms standard deviation, over 1240 samples. It is a
good idea to check this before doing actual performance measurements.

If a kernel source code was modified (e.g. performance improvement), the calibration
information is stale and should be dropped, to re-calibrate from start. This can be done by
using export STARPU_CALIBRATE=2.

Note: due to CUDA limitations, to be able to measure kernel duration, calibration
mode needs to disable asynchronous data transfers. Calibration thus disables data transfer
/ computation overlapping, and should thus not be used for eventual benchmarks. Note 2:
history-based performance models get calibrated only if a performance-model-based sched-
uler is chosen.

5.6 Task distribution vs Data transfer

Distributing tasks to balance the load induces data transfer penalty. StarPU thus needs
to find a balance between both. The target function that the dmda scheduler of StarPU
tries to minimize is alpha * T_execution + beta * T_data_transfer, where T_execution
is the estimated execution time of the codelet (usually accurate), and T_data_transfer is
the estimated data transfer time. The latter is estimated based on bus calibration before
execution start, i.e. with an idle machine, thus without contention. You can force bus
re-calibration by running starpu_calibrate_bus. The beta parameter defaults to 1, but
it can be worth trying to tweak it by using export STARPU_BETA=2 for instance, since
during real application execution, contention makes transfer times bigger. This is of course
imprecise, but in practice, a rough estimation already gives the good results that a precise
estimation would give.

5.7 Data prefetch

The heft, dmda and pheft scheduling policies perform data prefetch (see Section 8.2.2.3
[STARPU PREFETCH], page 44): as soon as a scheduling decision is taken for a task,
requests are issued to transfer its required data to the target processing unit, if needeed,
so that when the processing unit actually starts the task, its data will hopefully be already
available and it will not have to wait for the transfer to finish.

The application may want to perform some manual prefetching, for several reasons such
as excluding initial data transfers from performance measurements, or setting up an initial
statically-computed data distribution on the machine before submitting tasks, which will
thus guide StarPU toward an initial task distribution (since StarPU will try to avoid further
transfers).

This can be achieved by giving the starpu_data_prefetch_on_node function the handle
and the desired target memory node.

5.8 Power-based scheduling

If the application can provide some power performance model (through the power_model

field of the codelet structure), StarPU will take it into account when distributing tasks.
The target function that the dmda scheduler minimizes becomes alpha * T_execution +

beta * T_data_transfer + gamma * Consumption , where Consumption is the estimated

28 StarPU Handbook

task consumption in Joules. To tune this parameter, use export STARPU_GAMMA=3000 for
instance, to express that each Joule (i.e kW during 1000us) is worth 3000us execution
time penalty. Setting alpha and beta to zero permits to only take into account power
consumption.

This is however not sufficient to correctly optimize power: the scheduler would simply
tend to run all computations on the most energy-conservative processing unit. To account
for the consumption of the whole machine (including idle processing units), the idle power
of the machine should be given by setting export STARPU_IDLE_POWER=200 for 200W, for
instance. This value can often be obtained from the machine power supplier.

The power actually consumed by the total execution can be displayed by setting export

STARPU_PROFILING=1 STARPU_WORKER_STATS=1 .

5.9 Profiling

A quick view of how many tasks each worker has executed can be obtained by setting export
STARPU_WORKER_STATS=1 This is a convenient way to check that execution did happen on
accelerators without penalizing performance with the profiling overhead.

A quick view of how much data transfers have been issued can be obtained by setting
export STARPU_BUS_STATS=1 .

More detailed profiling information can be enabled by using export STARPU_

PROFILING=1 or by calling starpu_profiling_status_set from the source code.
Statistics on the execution can then be obtained by using export STARPU_BUS_STATS=1

and export STARPU_WORKER_STATS=1 . More details on performance feedback are provided
by the next chapter.

5.10 CUDA-specific optimizations

Due to CUDA limitations, StarPU will have a hard time overlapping its own communications
and the codelet computations if the application does not use a dedicated CUDA stream for
its computations. StarPU provides one by the use of starpu_cuda_get_local_stream()
which should be used by all CUDA codelet operations. For instance:

func <<<grid,block,0,starpu_cuda_get_local_stream()>>> (foo, bar);

cudaStreamSynchronize(starpu_cuda_get_local_stream());

Unfortunately, some CUDA libraries do not have stream variants of kernels. That will
lower the potential for overlapping.

Chapter 6: Performance feedback 29

6 Performance feedback

6.1 On-line performance feedback

6.1.1 Enabling on-line performance monitoring

In order to enable online performance monitoring, the application can call starpu_

profiling_status_set(STARPU_PROFILING_ENABLE). It is possible to detect whether
monitoring is already enabled or not by calling starpu_profiling_status_get(). En-
abling monitoring also reinitialize all previously collected feedback. The STARPU_PROFILING
environment variable can also be set to 1 to achieve the same effect.

Likewise, performance monitoring is stopped by calling starpu_profiling_status_

set(STARPU_PROFILING_DISABLE). Note that this does not reset the performance counters
so that the application may consult them later on.

More details about the performance monitoring API are available in section Section 9.10
[Profiling API], page 67.

6.1.2 Per-task feedback

If profiling is enabled, a pointer to a starpu_task_profiling_info structure is put in the
.profiling_info field of the starpu_task structure when a task terminates. This struc-
ture is automatically destroyed when the task structure is destroyed, either automatically
or by calling starpu_task_destroy.

The starpu_task_profiling_info structure indicates the date when the task was sub-
mitted (submit_time), started (start_time), and terminated (end_time), relative to the
initialization of StarPU with starpu_init. It also specifies the identifier of the worker that
has executed the task (workerid). These date are stored as timespec structures which
the user may convert into micro-seconds using the starpu_timing_timespec_to_us helper
function.

It it worth noting that the application may directly access this structure from the call-
back executed at the end of the task. The starpu_task structure associated to the callback
currently being executed is indeed accessible with the starpu_get_current_task() func-
tion.

6.1.3 Per-codelet feedback

The per_worker_stats field of the starpu_codelet_t structure is an array of counters.
The i-th entry of the array is incremented every time a task implementing the codelet is
executed on the i-th worker. This array is not reinitialized when profiling is enabled or
disabled.

6.1.4 Per-worker feedback

The second argument returned by the starpu_worker_get_profiling_info function is a
starpu_worker_profiling_info structure that gives statistics about the specified worker.
This structure specifies when StarPU started collecting profiling information for that worker
(start_time), the duration of the profiling measurement interval (total_time), the time
spent executing kernels (executing_time), the time spent sleeping because there is no

30 StarPU Handbook

task to execute at all (sleeping_time), and the number of tasks that were executed while
profiling was enabled. These values give an estimation of the proportion of time spent do
real work, and the time spent either sleeping because there are not enough executable tasks
or simply wasted in pure StarPU overhead.

Calling starpu_worker_get_profiling_info resets the profiling information associated
to a worker.

When an FxT trace is generated (see Section 6.2.1 [Generating traces], page 30), it is
also possible to use the starpu_top script (described in Section 6.2.4 [starpu-top], page 31)
to generate a graphic showing the evolution of these values during the time, for the different
workers.

6.1.5 Bus-related feedback

TODO

6.2 Off-line performance feedback

6.2.1 Generating traces with FxT

StarPU can use the FxT library (see https://savannah.nongnu.org/projects/fkt/) to
generate traces with a limited runtime overhead.

You can either get a tarball:

% wget http://download.savannah.gnu.org/releases/fkt/fxt-0.2.2.tar.gz

or use the FxT library from CVS (autotools are required):

% cvs -d :pserver:anonymous@cvs.sv.gnu.org:/sources/fkt co FxT

% ./bootstrap

Compiling and installing the FxT library in the $FXTDIR path is done following the
standard procedure:

% ./configure --prefix=$FXTDIR

% make

% make install

In order to have StarPU to generate traces, StarPU should be configured with the --

with-fxt option:

$./configure --with-fxt=$FXTDIR

Or you can simply point the PKG_CONFIG_PATH to $FXTDIR/lib/pkgconfig and pass
--with-fxt to ./configure

When FxT is enabled, a trace is generated when StarPU is terminated by calling starpu_
shutdown()). The trace is a binary file whose name has the form prof_file_XXX_YYY where
XXX is the user name, and YYY is the pid of the process that used StarPU. This file is saved
in the /tmp/ directory by default, or by the directory specified by the STARPU_FXT_PREFIX
environment variable.

6.2.2 Creating a Gantt Diagram

When the FxT trace file filename has been generated, it is possible to generate a trace in
the Paje format by calling:

Chapter 6: Performance feedback 31

% starpu_fxt_tool -i filename

Or alternatively, setting the STARPU_GENERATE_TRACE environment variable to 1 before
application execution will make StarPU do it automatically at application shutdown.

This will create a paje.trace file in the current directory that can be inspected with
the ViTE trace visualizing open-source tool. More information about ViTE is available at
http://vite.gforge.inria.fr/. It is possible to open the paje.trace file with ViTE by
using the following command:

% vite paje.trace

6.2.3 Creating a DAG with graphviz

When the FxT trace file filename has been generated, it is possible to generate a task
graph in the DOT format by calling:

$ starpu_fxt_tool -i filename

This will create a dag.dot file in the current directory. This file is a task graph described
using the DOT language. It is possible to get a graphical output of the graph by using the
graphviz library:

$ dot -Tpdf dag.dot -o output.pdf

6.2.4 Monitoring activity

When the FxT trace file filename has been generated, it is possible to generate a activity
trace by calling:

$ starpu_fxt_tool -i filename

This will create an activity.data file in the current directory. A profile of the applica-
tion showing the activity of StarPU during the execution of the program can be generated:

$ starpu_top.sh activity.data

This will create a file named activity.eps in the current directory. This picture is
composed of two parts. The first part shows the activity of the different workers. The green
sections indicate which proportion of the time was spent executed kernels on the processing
unit. The red sections indicate the proportion of time spent in StartPU: an important
overhead may indicate that the granularity may be too low, and that bigger tasks may be
appropriate to use the processing unit more efficiently. The black sections indicate that the
processing unit was blocked because there was no task to process: this may indicate a lack
of parallelism which may be alleviated by creating more tasks when it is possible.

The second part of the activity.eps picture is a graph showing the evolution of the
number of tasks available in the system during the execution. Ready tasks are shown in
black, and tasks that are submitted but not schedulable yet are shown in grey.

6.3 Performance of codelets

The performance model of codelets can be examined by using the starpu_perfmodel_

display tool:

$ starpu_perfmodel_display -l

file: <malloc_pinned.hannibal>

file: <starpu_slu_lu_model_21.hannibal>

32 StarPU Handbook

file: <starpu_slu_lu_model_11.hannibal>

file: <starpu_slu_lu_model_22.hannibal>

file: <starpu_slu_lu_model_12.hannibal>

Here, the codelets of the lu example are available. We can examine the performance of
the 22 kernel:

$ starpu_perfmodel_display -s starpu_slu_lu_model_22

performance model for cpu

hash size mean dev n

57618ab0 19660800 2.851069e+05 1.829369e+04 109

performance model for cuda_0

hash size mean dev n

57618ab0 19660800 1.164144e+04 1.556094e+01 315

performance model for cuda_1

hash size mean dev n

57618ab0 19660800 1.164271e+04 1.330628e+01 360

performance model for cuda_2

hash size mean dev n

57618ab0 19660800 1.166730e+04 3.390395e+02 456

We can see that for the given size, over a sample of a few hundreds of execution, the
GPUs are about 20 times faster than the CPUs (numbers are in us). The standard deviation
is extremely low for the GPUs, and less than 10% for CPUs.

Chapter 7: StarPU MPI support 33

7 StarPU MPI support

The integration of MPI transfers within task parallelism is done in a very natural way by
the means of asynchronous interactions between the application and StarPU. This is imple-
mented in a separate libstarpumpi library which basically provides "StarPU" equivalents
of MPI_* functions, where void * buffers are replaced with starpu_data_handles, and all
GPU-RAM-NIC transfers are handled efficiently by StarPU-MPI.

7.1 The API

7.1.1 Initialisation

[Function]int starpu_mpi_initialize (void)
Initializes the starpumpi library. This must be called between calling starpu_init

and other starpu_mpi functions. This function does not call MPI_Init, it should be
called beforehand.

[Function]int starpu_mpi_initialize_extended (int *rank , int
*world_size)

Initializes the starpumpi library. This must be called between calling starpu_init

and other starpu_mpi functions. This function calls MPI_Init, and therefore should
be prefered to the previous one for MPI implementations which are not thread-safe.
Returns the current MPI node rank and world size.

[Function]int starpu_mpi_shutdown (void)
Cleans the starpumpi library. This must be called between calling starpu_mpi func-
tions and starpu_shutdown. MPI_Finalize will be called if StarPU-MPI has been
initialized by calling starpu_mpi_initialize_extended.

7.1.2 Communication

[Function]int starpu_mpi_send (starpu data handle data_handle , int dest , int
mpi_tag , MPI Comm comm)

[Function]int starpu_mpi_recv (starpu data handle data_handle , int source ,
int mpi_tag , MPI Comm comm , MPI Status *status)

[Function]int starpu_mpi_isend (starpu data handle data_handle ,
starpu mpi req *req , int dest , int mpi_tag , MPI Comm comm)

[Function]int starpu_mpi_irecv (starpu data handle data_handle ,
starpu mpi req *req , int source , int mpi_tag , MPI Comm comm)

[Function]int starpu_mpi_isend_detached (starpu data handle data_handle ,
int dest , int mpi_tag , MPI Comm comm , void (*callback)(void *), void
*arg)

34 StarPU Handbook

[Function]int starpu_mpi_irecv_detached (starpu data handle data_handle ,
int source , int mpi_tag , MPI Comm comm , void (*callback)(void *), void
*arg)

[Function]int starpu_mpi_wait (starpu mpi req *req , MPI Status *status)

[Function]int starpu_mpi_test (starpu mpi req *req , int *flag , MPI Status
*status)

[Function]int starpu_mpi_barrier (MPI Comm comm)

[Function]int starpu_mpi_isend_detached_unlock_tag (starpu data handle
data_handle , int dest , int mpi_tag , MPI Comm comm , starpu tag t tag)

When the transfer is completed, the tag is unlocked

[Function]int starpu_mpi_irecv_detached_unlock_tag (starpu data handle
data_handle , int source , int mpi_tag , MPI Comm comm , starpu tag t
tag)

[Function]int starpu_mpi_isend_array_detached_unlock_tag (unsigned
array_size , starpu data handle *data_handle , int *dest , int *mpi_tag ,
MPI Comm *comm , starpu tag t tag)

Asynchronously send an array of buffers, and unlocks the tag once all of them are
transmitted.

[Function]int starpu_mpi_irecv_array_detached_unlock_tag (unsigned
array_size , starpu data handle *data_handle , int *source , int
*mpi_tag , MPI Comm *comm , starpu tag t tag)

Chapter 7: StarPU MPI support 35

7.2 Simple Example

� �
void increment_token(void)

{

struct starpu_task *task = starpu_task_create();

task->cl = &increment_cl;

task->buffers[0].handle = token_handle;

task->buffers[0].mode = STARPU_RW;

starpu_task_submit(task);

}
 	� �
int main(int argc, char **argv)

{

int rank, size;

starpu_init(NULL);

starpu_mpi_initialize_extended(&rank, &size);

starpu_vector_data_register(&token_handle, 0, (uintptr_t)&token, 1, sizeof(unsigned));

unsigned nloops = NITER;

unsigned loop;

unsigned last_loop = nloops - 1;

unsigned last_rank = size - 1;
 	

36 StarPU Handbook

� �
for (loop = 0; loop < nloops; loop++) {

int tag = loop*size + rank;

if (loop == 0 && rank == 0)

{

token = 0;

fprintf(stdout, "Start with token value %d\n", token);

}

else

{

starpu_mpi_irecv_detached(token_handle, (rank+size-1)%size, tag,

MPI_COMM_WORLD, NULL, NULL);

}

increment_token();

if (loop == last_loop && rank == last_rank)

{

starpu_data_acquire(token_handle, STARPU_R);

fprintf(stdout, "Finished : token value %d\n", token);

starpu_data_release(token_handle);

}

else

{

starpu_mpi_isend_detached(token_handle, (rank+1)%size, tag+1,

MPI_COMM_WORLD, NULL, NULL);

}

}

starpu_task_wait_for_all();
 	� �
starpu_mpi_shutdown();

starpu_shutdown();

if (rank == last_rank)

{

fprintf(stderr, "[%d] token = %d == %d * %d ?\n", rank, token, nloops, size);

STARPU_ASSERT(token == nloops*size);

}
 	

Chapter 7: StarPU MPI support 37

7.3 MPI Insert Task Utility

[Function]void starpu_mpi_insert_task (MPI Comm comm , starpu codelet
*cl , ...)

Create and submit a task corresponding to cl with the following arguments. The
argument list must be zero-terminated.

The arguments following the codelets are the same types as for the function starpu_

insert_task defined in Section 4.9 [Insert Task Utility], page 23. The extra argument
STARPU_EXECUTE followed by an integer allows to specify the node to execute the
codelet.

The algorithm is as follows:

1. Find out whether we are to execute the codelet because we own the data to be
written to. If different tasks own data to be written to, the argument STARPU_
EXECUTE should be used to specify the executing task ET.

2. Send and receive data as requested. Tasks owning data which need to be read
by the executing task ET are sending them to ET.

3. Execute the codelet. This is done by the task selected in the 1st step of the
algorithm.

4. In the case when different tasks own data to be written to, send W data back to
their owners.

The algorithm also includes a cache mechanism that allows not to send data twice to
the same task, unless the data has been modified.

[Function]void starpu_mpi_get_data_on_node (MPI Comm comm ,
starpu data handle data_handle , int node)

38 StarPU Handbook

Here an example showing how to use starpu_mpi_insert_task. One first needs to define
a distribution function which specifies the locality of the data. Note that that distribution
information needs to be given to StarPU by calling starpu_data_set_rank.� �
/* Returns the MPI node number where data is */

int my_distrib(int x, int y, int nb_nodes) {

/* Cyclic distrib */

return ((int)(x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * sqrt(nb_nodes))) % nb_nodes;

// /* Linear distrib */

// return x / sqrt(nb_nodes) + (y / sqrt(nb_nodes)) * X;

}
 	
Now the data can be registered within StarPU. Data which are not owned but will be

needed for computations can be registered through the lazy allocation mechanism, i.e. with
a home_node set to -1. StarPU will automatically allocate the memory when it is used for
the first time.� �

unsigned matrix[X][Y];

starpu_data_handle data_handles[X][Y];

for(x = 0; x < X; x++) {

for (y = 0; y < Y; y++) {

int mpi_rank = my_distrib(x, y, size);

if (mpi_rank == rank)

/* Owning data */

starpu_variable_data_register(&data_handles[x][y], 0,

(uintptr_t)&(matrix[x][y]), sizeof(unsigned));

else if (rank == mpi_rank+1 || rank == mpi_rank-1)

/* I don’t own that index, but will need it for my computations */

starpu_variable_data_register(&data_handles[x][y], -1,

(uintptr_t)NULL, sizeof(unsigned));

else

/* I know it’s useless to allocate anything for this */

data_handles[x][y] = NULL;

if (data_handles[x][y])

starpu_data_set_rank(data_handles[x][y], mpi_rank);

}

}
 	
Now starpu_mpi_insert_task() can be called for the different steps of the application.� �
for(loop=0 ; loop<niter; loop++)

for (x = 1; x < X-1; x++)

for (y = 1; y < Y-1; y++)

starpu_mpi_insert_task(MPI_COMM_WORLD, &stencil5_cl,

STARPU_RW, data_handles[x][y],

STARPU_R, data_handles[x-1][y],

STARPU_R, data_handles[x+1][y],

STARPU_R, data_handles[x][y-1],

STARPU_R, data_handles[x][y+1],

0);

starpu_task_wait_for_all();
 	

Chapter 8: Configuring StarPU 39

8 Configuring StarPU

8.1 Compilation configuration

The following arguments can be given to the configure script.

8.1.1 Common configuration

8.1.1.1 --enable-debug

Description:
Enable debugging messages.

8.1.1.2 --enable-fast

Description:
Do not enforce assertions, saves a lot of time spent to compute them otherwise.

8.1.1.3 --enable-verbose

Description:
Augment the verbosity of the debugging messages. This can be disabled at
runtime by setting the environment variable STARPU_SILENT to any value.

% STARPU_SILENT=1 ./vector_scal

8.1.1.4 --enable-coverage

Description:
Enable flags for the gcov coverage tool.

8.1.2 Configuring workers

8.1.2.1 --enable-nmaxcpus=<number>

Description:
Defines the maximum number of CPU cores that StarPU will support, then
available as the STARPU_NMAXCPUS macro.

8.1.2.2 --disable-cpu

Description:
Disable the use of CPUs of the machine. Only GPUs etc. will be used.

8.1.2.3 --enable-maxcudadev=<number>

Description:
Defines the maximum number of CUDA devices that StarPU will support, then
available as the STARPU_MAXCUDADEVS macro.

8.1.2.4 --disable-cuda

Description:
Disable the use of CUDA, even if a valid CUDA installation was detected.

40 StarPU Handbook

8.1.2.5 --with-cuda-dir=<path>

Description:
Specify the directory where CUDA is installed. This directory should notably
contain include/cuda.h.

8.1.2.6 --with-cuda-include-dir=<path>

Description:
Specify the directory where CUDA headers are installed. This directory should
notably contain cuda.h. This defaults to /include appended to the value given
to --with-cuda-dir.

8.1.2.7 --with-cuda-lib-dir=<path>

Description:
Specify the directory where the CUDA library is installed. This directory should
notably contain the CUDA shared libraries (e.g. libcuda.so). This defaults to
/lib appended to the value given to --with-cuda-dir.

8.1.2.8 --enable-maxopencldev=<number>

Description:
Defines the maximum number of OpenCL devices that StarPU will support,
then available as the STARPU_MAXOPENCLDEVS macro.

8.1.2.9 --disable-opencl

Description:
Disable the use of OpenCL, even if the SDK is detected.

8.1.2.10 --with-opencl-dir=<path>

Description:
Specify the location of the OpenCL SDK. This directory should notably contain
include/CL/cl.h (or include/OpenCL/cl.h on Mac OS).

8.1.2.11 --with-opencl-include-dir=<path>

Description:
Specify the location of OpenCL headers. This directory should notably contain
CL/cl.h (or OpenCL/cl.h on Mac OS). This defaults to /include appended
to the value given to --with-opencl-dir.

8.1.2.12 --with-opencl-lib-dir=<path>

Description:
Specify the location of the OpenCL library. This directory should notably
contain the OpenCL shared libraries (e.g. libOpenCL.so). This defaults to
/lib appended to the value given to --with-opencl-dir.

Chapter 8: Configuring StarPU 41

8.1.2.13 --enable-gordon

Description:
Enable the use of the Gordon runtime for Cell SPUs.

8.1.2.14 --with-gordon-dir=<path>

Description:
Specify the location of the Gordon SDK.

8.1.3 Advanced configuration

8.1.3.1 --enable-perf-debug

Description:
Enable performance debugging.

8.1.3.2 --enable-model-debug

Description:
Enable performance model debugging.

8.1.3.3 --enable-stats

Description:
Enable statistics.

8.1.3.4 --enable-maxbuffers=<nbuffers>

Description:
Define the maximum number of buffers that tasks will be able to take as pa-
rameters, then available as the STARPU_NMAXBUFS macro.

8.1.3.5 --enable-allocation-cache

Description:
Enable the use of a data allocation cache to avoid the cost of it with CUDA.
Still experimental.

8.1.3.6 --enable-opengl-render

Description:
Enable the use of OpenGL for the rendering of some examples.

8.1.3.7 --enable-blas-lib=<name>

Description:
Specify the blas library to be used by some of the examples. The library has
to be ’atlas’ or ’goto’.

8.1.3.8 --with-magma=<path>

Description:
Specify where magma is installed. This directory should notably contain
include/magmablas.h.

42 StarPU Handbook

8.1.3.9 --with-fxt=<path>

Description:
Specify the location of FxT (for generating traces and rendering them using
ViTE). This directory should notably contain include/fxt/fxt.h.

8.1.3.10 --with-perf-model-dir=<dir>

Description:
Specify where performance models should be stored (instead of defaulting to
the current user’s home).

8.1.3.11 --with-mpicc=<path to mpicc>

Description:
Specify the location of the mpicc compiler to be used for starpumpi.

8.1.3.12 --with-goto-dir=<dir>

Description:
Specify the location of GotoBLAS.

8.1.3.13 --with-atlas-dir=<dir>

Description:
Specify the location of ATLAS. This directory should notably contain
include/cblas.h.

8.1.3.14 --with-mkl-cflags=<cflags>

Description:
Specify the compilation flags for the MKL Library.

8.1.3.15 --with-mkl-ldflags=<ldflags>

Description:
Specify the linking flags for the MKL Library. Note that the
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

website provides a script to determine the linking flags.

8.2 Execution configuration through environment variables

Note: the values given in starpu_conf structure passed when calling starpu_init will
override the values of the environment variables.

8.2.1 Configuring workers

8.2.1.1 STARPU_NCPUS – Number of CPU workers

Description:
Specify the number of CPU workers (thus not including workers dedicated to
control acceleratores). Note that by default, StarPU will not allocate more
CPU workers than there are physical CPUs, and that some CPUs are used to
control the accelerators.

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Chapter 8: Configuring StarPU 43

8.2.1.2 STARPU_NCUDA – Number of CUDA workers

Description:
Specify the number of CUDA devices that StarPU can use. If STARPU_NCUDA
is lower than the number of physical devices, it is possible to select which
CUDA devices should be used by the means of the STARPU_WORKERS_CUDAID

environment variable. By default, StarPU will create as many CUDA workers
as there are CUDA devices.

8.2.1.3 STARPU_NOPENCL – Number of OpenCL workers

Description:
OpenCL equivalent of the STARPU_NCUDA environment variable.

8.2.1.4 STARPU_NGORDON – Number of SPU workers (Cell)

Description:
Specify the number of SPUs that StarPU can use.

8.2.1.5 STARPU_WORKERS_CPUID – Bind workers to specific CPUs

Description:
Passing an array of integers (starting from 0) in STARPU_WORKERS_CPUID speci-
fies on which logical CPU the different workers should be bound. For instance,
if STARPU_WORKERS_CPUID = "0 1 4 5", the first worker will be bound to logical
CPU #0, the second CPU worker will be bound to logical CPU #1 and so on.
Note that the logical ordering of the CPUs is either determined by the OS, or
provided by the hwloc library in case it is available.

Note that the first workers correspond to the CUDA workers, then come the
OpenCL and the SPU, and finally the CPU workers. For example if we have
STARPU_NCUDA=1, STARPU_NOPENCL=1, STARPU_NCPUS=2 and STARPU_WORKERS_

CPUID = "0 2 1 3", the CUDA device will be controlled by logical CPU #0, the
OpenCL device will be controlled by logical CPU #2, and the logical CPUs #1
and #3 will be used by the CPU workers.

If the number of workers is larger than the array given in STARPU_WORKERS_

CPUID, the workers are bound to the logical CPUs in a round-robin fashion:
if STARPU_WORKERS_CPUID = "0 1", the first and the third (resp. second and
fourth) workers will be put on CPU #0 (resp. CPU #1).

This variable is ignored if the use_explicit_workers_bindid flag of the
starpu_conf structure passed to starpu_init is set.

8.2.1.6 STARPU_WORKERS_CUDAID – Select specific CUDA devices

Description:
Similarly to the STARPU_WORKERS_CPUID environment variable, it is possible to
select which CUDA devices should be used by StarPU. On a machine equipped
with 4 GPUs, setting STARPU_WORKERS_CUDAID = "1 3" and STARPU_NCUDA=2

specifies that 2 CUDA workers should be created, and that they should use
CUDA devices #1 and #3 (the logical ordering of the devices is the one reported
by CUDA).

44 StarPU Handbook

This variable is ignored if the use_explicit_workers_cuda_gpuid flag of the
starpu_conf structure passed to starpu_init is set.

8.2.1.7 STARPU_WORKERS_OPENCLID – Select specific OpenCL devices

Description:
OpenCL equivalent of the STARPU_WORKERS_CUDAID environment variable.

This variable is ignored if the use_explicit_workers_opencl_gpuid flag of
the starpu_conf structure passed to starpu_init is set.

8.2.2 Configuring the Scheduling engine

8.2.2.1 STARPU_SCHED – Scheduling policy

Description:
This chooses between the different scheduling policies proposed by StarPU:
work random, stealing, greedy, with performance models, etc.

Use STARPU_SCHED=help to get the list of available schedulers.

8.2.2.2 STARPU_CALIBRATE – Calibrate performance models

Description:
If this variable is set to 1, the performance models are calibrated during the
execution. If it is set to 2, the previous values are dropped to restart calibration
from scratch. Setting this variable to 0 disable calibration, this is the default
behaviour.

Note: this currently only applies to dm, dmda and heft scheduling policies.

8.2.2.3 STARPU_PREFETCH – Use data prefetch

Description:
This variable indicates whether data prefetching should be enabled (0 means
that it is disabled). If prefetching is enabled, when a task is scheduled to
be executed e.g. on a GPU, StarPU will request an asynchronous transfer in
advance, so that data is already present on the GPU when the task starts. As
a result, computation and data transfers are overlapped. Note that prefetching
is enabled by default in StarPU.

8.2.2.4 STARPU_SCHED_ALPHA – Computation factor

Description:
To estimate the cost of a task StarPU takes into account the estimated compu-
tation time (obtained thanks to performance models). The alpha factor is the
coefficient to be applied to it before adding it to the communication part.

8.2.2.5 STARPU_SCHED_BETA – Communication factor

Description:
To estimate the cost of a task StarPU takes into account the estimated data
transfer time (obtained thanks to performance models). The beta factor is the
coefficient to be applied to it before adding it to the computation part.

Chapter 8: Configuring StarPU 45

8.2.3 Miscellaneous and debug

8.2.3.1 STARPU_SILENT – Disable verbose mode

Description:
This variable allows to disable verbose mode at runtime when StarPU has been
configured with the option --enable-verbose.

8.2.3.2 STARPU_LOGFILENAME – Select debug file name

Description:
This variable specifies in which file the debugging output should be saved to.

8.2.3.3 STARPU_FXT_PREFIX – FxT trace location

Description
This variable specifies in which directory to save the trace generated if FxT is
enabled. It needs to have a trailing ’/’ character.

8.2.3.4 STARPU_LIMIT_GPU_MEM – Restrict memory size on the GPUs

Description
This variable specifies the maximum number of megabytes that should be avail-
able to the application on each GPUs. In case this value is smaller than the
size of the memory of a GPU, StarPU pre-allocates a buffer to waste memory
on the device. This variable is intended to be used for experimental purposes
as it emulates devices that have a limited amount of memory.

8.2.3.5 STARPU_GENERATE_TRACE – Generate a Paje trace when
StarPU is shut down

Description
When set to 1, this variable indicates that StarPU should automatically gener-
ate a Paje trace when starpu shutdown is called.

Chapter 9: StarPU API 47

9 StarPU API

9.1 Initialization and Termination

9.1.1 starpu_init – Initialize StarPU

Description:
This is StarPU initialization method, which must be called prior to any other
StarPU call. It is possible to specify StarPU’s configuration (e.g. scheduling
policy, number of cores, ...) by passing a non-null argument. Default configu-
ration is used if the passed argument is NULL.

Return value:
Upon successful completion, this function returns 0. Otherwise, -ENODEV indi-
cates that no worker was available (so that StarPU was not initialized).

Prototype: int starpu_init(struct starpu_conf *conf);

9.1.2 struct starpu_conf – StarPU runtime configuration

Description:
This structure is passed to the starpu_init function in order to configure
StarPU. When the default value is used, StarPU automatically selects the num-
ber of processing units and takes the default scheduling policy. This parameter
overwrites the equivalent environment variables.

Fields:

sched_policy_name (default = NULL):
This is the name of the scheduling policy. This can also be specified
with the STARPU_SCHED environment variable.

sched_policy (default = NULL):
This is the definition of the scheduling policy. This field is ignored
if sched_policy_name is set.

ncpus (default = -1):
This is the number of CPU cores that StarPU can use. This can
also be specified with the STARPU_NCPUS environment variable.

ncuda (default = -1):
This is the number of CUDA devices that StarPU can use. This
can also be specified with the STARPU_NCUDA environment variable.

nopencl (default = -1):
This is the number of OpenCL devices that StarPU can use. This
can also be specified with the STARPU_NOPENCL environment vari-
able.

nspus (default = -1):
This is the number of Cell SPUs that StarPU can use. This can
also be specified with the STARPU_NGORDON environment variable.

48 StarPU Handbook

use_explicit_workers_bindid (default = 0)
If this flag is set, the workers_bindid array indicates
where the different workers are bound, otherwise StarPU
automatically selects where to bind the different workers unless
the STARPU_WORKERS_CPUID environment variable is set. The
STARPU_WORKERS_CPUID environment variable is ignored if the
use_explicit_workers_bindid flag is set.

workers_bindid[STARPU_NMAXWORKERS]

If the use_explicit_workers_bindid flag is set, this array indi-
cates where to bind the different workers. The i-th entry of the
workers_bindid indicates the logical identifier of the processor
which should execute the i-th worker. Note that the logical or-
dering of the CPUs is either determined by the OS, or provided by
the hwloc library in case it is available. When this flag is set, the
Section 8.2.1.5 [STARPU WORKERS CPUID], page 43 environ-
ment variable is ignored.

use_explicit_workers_cuda_gpuid (default = 0)
If this flag is set, the CUDA workers will be attached to
the CUDA devices specified in the workers_cuda_gpuid

array. Otherwise, StarPU affects the CUDA devices in a
round-robin fashion. When this flag is set, the Section 8.2.1.6
[STARPU WORKERS CUDAID], page 43 environment variable
is ignored.

workers_cuda_gpuid[STARPU_NMAXWORKERS]

If the use_explicit_workers_cuda_gpuid flag is set, this array
contains the logical identifiers of the CUDA devices (as used by
cudaGetDevice).

use_explicit_workers_opencl_gpuid (default = 0)
If this flag is set, the OpenCL workers will be attached to the
OpenCL devices specified in the workers_opencl_gpuid array.
Otherwise, StarPU affects the OpenCL devices in a round-robin
fashion.

workers_opencl_gpuid[STARPU_NMAXWORKERS]:
calibrate (default = 0):

If this flag is set, StarPU will calibrate the performance models
when executing tasks. If this value is equal to -1, the default value
is used. The default value is overwritten by the STARPU_CALIBRATE
environment variable when it is set.

9.1.3 starpu_conf_init – Initialize starpu conf structure

This function initializes the starpu_conf structure passed as argument with
the default values. In case some configuration parameters are already speci-
fied through environment variables, starpu_conf_init initializes the fields of
the structure according to the environment variables. For instance if STARPU_

Chapter 9: StarPU API 49

CALIBRATE is set, its value is put in the .ncuda field of the structure passed as
argument.

Return value:
Upon successful completion, this function returns 0. Otherwise, -EINVAL indi-
cates that the argument was NULL.

Prototype: int starpu_conf_init(struct starpu_conf *conf);

9.1.4 starpu_shutdown – Terminate StarPU

[Function]void starpu_shutdown (void)
This is StarPU termination method. It must be called at the end of the application:
statistics and other post-mortem debugging information are not guaranteed to be
available until this method has been called.

9.2 Workers’ Properties

9.2.1 starpu_worker_get_count – Get the number of processing
units

[Function]unsigned starpu_worker_get_count (void)
This function returns the number of workers (i.e. processing units executing StarPU
tasks). The returned value should be at most STARPU_NMAXWORKERS.

9.2.2 starpu_worker_get_count_by_type – Get the number of
processing units of a given type

[Function]int starpu_worker_get_count_by_type (enum starpu archtype
type)

Returns the number of workers of the type indicated by the argument. A positive (or
null) value is returned in case of success, -EINVAL indicates that the type is not valid
otherwise.

9.2.3 starpu_cpu_worker_get_count – Get the number of CPU
controlled by StarPU

[Function]unsigned starpu_cpu_worker_get_count (void)
This function returns the number of CPUs controlled by StarPU. The returned value
should be at most STARPU_NMAXCPUS.

9.2.4 starpu_cuda_worker_get_count – Get the number of CUDA
devices controlled by StarPU

[Function]unsigned starpu_cuda_worker_get_count (void)
This function returns the number of CUDA devices controlled by StarPU. The re-
turned value should be at most STARPU_MAXCUDADEVS.

50 StarPU Handbook

9.2.5 starpu_opencl_worker_get_count – Get the number of
OpenCL devices controlled by StarPU

[Function]unsigned starpu_opencl_worker_get_count (void)
This function returns the number of OpenCL devices controlled by StarPU. The
returned value should be at most STARPU_MAXOPENCLDEVS.

9.2.6 starpu_spu_worker_get_count – Get the number of Cell SPUs
controlled by StarPU

[Function]unsigned starpu_opencl_worker_get_count (void)
This function returns the number of Cell SPUs controlled by StarPU.

9.2.7 starpu_worker_get_id – Get the identifier of the current
worker

[Function]int starpu_worker_get_id (void)
This function returns the identifier of the worker associated to the calling thread. The
returned value is either -1 if the current context is not a StarPU worker (i.e. when
called from the application outside a task or a callback), or an integer between 0 and
starpu_worker_get_count() - 1.

9.2.8 starpu_worker_get_ids_by_type – Get the list of identifiers of
workers with a given type

[Function]int starpu_worker_get_ids_by_type (enum starpu archtype type ,
int *workerids , int maxsize)

Fill the workerids array with the identifiers of the workers that have the type indicated
in the first argument. The maxsize argument indicates the size of the workids array.
The returned value gives the number of identifiers that were put in the array. -ERANGE
is returned is maxsize is lower than the number of workers with the appropriate type:
in that case, the array is filled with the maxsize first elements. To avoid such overflows,
the value of maxsize can be chosen by the means of the starpu_worker_get_count_
by_type function, or by passing a value greater or equal to STARPU_NMAXWORKERS.

9.2.9 starpu_worker_get_devid – Get the device identifier of a
worker

[Function]int starpu_worker_get_devid (int id)
This functions returns the device id of the worker associated to an identifier (as
returned by the starpu_worker_get_id function). In the case of a CUDA worker,
this device identifier is the logical device identifier exposed by CUDA (used by the
cudaGetDevice function for instance). The device identifier of a CPU worker is the
logical identifier of the core on which the worker was bound; this identifier is either
provided by the OS or by the hwloc library in case it is available.

9.2.10 starpu_worker_get_type – Get the type of processing unit
associated to a worker

[Function]enum starpu_archtype starpu_worker_get_type (int id)
This function returns the type of worker associated to an identifier (as returned by the
starpu_worker_get_id function). The returned value indicates the architecture of

Chapter 9: StarPU API 51

the worker: STARPU_CPU_WORKER for a CPU core, STARPU_CUDA_WORKER for a CUDA
device, STARPU_OPENCL_WORKER for a OpenCL device, and STARPU_GORDON_WORKER

for a Cell SPU. The value returned for an invalid identifier is unspecified.

9.2.11 starpu_worker_get_name – Get the name of a worker

[Function]void starpu_worker_get_name (int id , char *dst , size t maxlen)
StarPU associates a unique human readable string to each processing unit. This
function copies at most the maxlen first bytes of the unique string associated to a
worker identified by its identifier id into the dst buffer. The caller is responsible for
ensuring that the dst is a valid pointer to a buffer of maxlen bytes at least. Calling
this function on an invalid identifier results in an unspecified behaviour.

9.2.12 starpu_worker_get_memory_node – Get the memory node of a
worker

[Function]unsigned starpu_worker_get_memory_node (unsigned workerid)
This function returns the identifier of the memory node associated to the worker
identified by workerid.

9.3 Data Library

This section describes the data management facilities provided by StarPU.

We show how to use existing data interfaces in Section 9.4 [Data Interfaces], page 54,
but developers can design their own data interfaces if required.

9.3.1 starpu_malloc – Allocate data and pin it

[Function]int starpu_malloc (void **A , size t dim)
This function allocates data of the given size in main memory. It will also try to pin
it in CUDA or OpenCL, so that data transfers from this buffer can be asynchronous,
and thus permit data transfer and computation overlapping. The allocated buffer
must be freed thanks to the starpu_free function.

9.3.2 starpu_access_mode – Data access mode

This datatype describes a data access mode. The different available modes are:

STARPU_R read-only mode.
STARPU_W write-only mode.
STARPU_RW read-write mode. This is equivalent to STARPU_R|STARPU_W.
STARPU_SCRATCH scratch memory. A temporary buffer is allocated for the
task, but StarPU does not enforce data consistency, i.e. each device has its
own buffer, independently from each other (even for CPUs). This is useful for
temporary variables. For now, no behaviour is defined concerning the relation
with STARPU R/W modes and the value provided at registration, i.e. the
value of the scratch buffer is undefined at entry of the codelet function, but
this is being considered for future extensions.
STARPU_REDUX reduction mode. TODO: document, as well as
starpu_data_set_reduction_methods

52 StarPU Handbook

9.3.3 unsigned memory_node – Memory node

Description:
Every worker is associated to a memory node which is a logical abstraction of
the address space from which the processing unit gets its data. For instance, the
memory node associated to the different CPU workers represents main memory
(RAM), the memory node associated to a GPU is DRAM embedded on the
device. Every memory node is identified by a logical index which is accessible
from the starpu_worker_get_memory_node function. When registering a piece
of data to StarPU, the specified memory node indicates where the piece of data
initially resides (we also call this memory node the home node of a piece of
data).

9.3.4 starpu_data_handle – StarPU opaque data handle

Description:
StarPU uses starpu_data_handle as an opaque handle to manage a piece of
data. Once a piece of data has been registered to StarPU, it is associated to a
starpu_data_handle which keeps track of the state of the piece of data over
the entire machine, so that we can maintain data consistency and locate data
replicates for instance.

9.3.5 void *interface – StarPU data interface

Description:
Data management is done at a high-level in StarPU: rather than accessing a
mere list of contiguous buffers, the tasks may manipulate data that are described
by a high-level construct which we call data interface.

An example of data interface is the "vector" interface which describes a con-
tiguous data array on a spefic memory node. This interface is a simple structure
containing the number of elements in the array, the size of the elements, and
the address of the array in the appropriate address space (this address may
be invalid if there is no valid copy of the array in the memory node). More
informations on the data interfaces provided by StarPU are given in Section 9.4
[Data Interfaces], page 54.

When a piece of data managed by StarPU is used by a task, the task imple-
mentation is given a pointer to an interface describing a valid copy of the data
that is accessible from the current processing unit.

9.3.6 starpu_data_register – Register a piece of data to StarPU

[Function]void starpu_data_register (starpu data handle *handleptr ,
uint32 t home_node , void *interface , struct starpu data interface ops t
*ops)

Register a piece of data into the handle located at the handleptr address. The interface
buffer contains the initial description of the data in the home node. The ops argument
is a pointer to a structure describing the different methods used to manipulate this
type of interface. See Section 10.1.1 [struct starpu data interface ops t], page 73 for
more details on this structure.

Chapter 9: StarPU API 53

If home_node is -1, StarPU will automatically allocate the memory when it is used
for the first time in write-only mode. Once such data handle has been automatically
allocated, it is possible to access it using any access mode.

Note that StarPU supplies a set of predefined types of interface (e.g. vector or matrix)
which can be registered by the means of helper functions (e.g. starpu_vector_data_
register or starpu_matrix_data_register).

9.3.7 starpu_data_unregister – Unregister a piece of data from
StarPU

[Function]void starpu_data_unregister (starpu data handle handle)
This function unregisters a data handle from StarPU. If the data was automatically
allocated by StarPU because the home node was -1, all automatically allocated buffers
are freed. Otherwise, a valid copy of the data is put back into the home node in the
buffer that was initially registered. Using a data handle that has been unregistered
from StarPU results in an undefined behaviour.

9.3.8 starpu_data_invalidate – Invalidate all data replicates

[Function]void starpu_data_invalidate (starpu data handle handle)
Destroy all replicates of the data handle. After data invalidation, the first access to
the handle must be performed in write-only mode. Accessing an invalidated data in
read-mode results in undefined behaviour.

9.3.9 starpu_data_acquire – Access registered data from the
application

[Function]int starpu_data_acquire (starpu data handle handle ,
starpu access mode mode)

The application must call this function prior to accessing registered data from main
memory outside tasks. StarPU ensures that the application will get an up-to-date
copy of the data in main memory located where the data was originally registered,
and that all concurrent accesses (e.g. from tasks) will be consistent with the access
mode specified in themode argument. starpu_data_releasemust be called once the
application does not need to access the piece of data anymore. Note that implicit data
dependencies are also enforced by starpu_data_acquire, i.e. starpu_data_acquire
will wait for all tasks scheduled to work on the data, unless that they have not been
disabled explictly by calling starpu_data_set_default_sequential_consistency_
flag or starpu_data_set_sequential_consistency_flag. starpu_data_acquire
is a blocking call, so that it cannot be called from tasks or from their callbacks (in
that case, starpu_data_acquire returns -EDEADLK). Upon successful completion,
this function returns 0.

9.3.10 starpu_data_acquire_cb – Access registered data from the
application asynchronously

[Function]int starpu_data_acquire_cb (starpu data handle handle ,
starpu access mode mode , void (*callback)(void *), void *arg)

starpu_data_acquire_cb is the asynchronous equivalent of starpu_data_release.
When the data specified in the first argument is available in the appropriate access

54 StarPU Handbook

mode, the callback function is executed. The application may access the requested
data during the execution of this callback. The callback function must call starpu_
data_release once the application does not need to access the piece of data anymore.
Note that implicit data dependencies are also enforced by starpu_data_acquire_cb

in case they are enabled. Contrary to starpu_data_acquire, this function is non-
blocking and may be called from task callbacks. Upon successful completion, this
function returns 0.

9.3.11 starpu_data_release – Release registered data from the
application

[Function]void starpu_data_release (starpu data handle handle)
This function releases the piece of data acquired by the application either by starpu_

data_acquire or by starpu_data_acquire_cb.

9.3.12 starpu_data_set_wt_mask – Set the Write-Through mask

[Function]void starpu_data_set_wt_mask (starpu data handle handle ,
uint32 t wt_mask)

This function sets the write-through mask of a given data, i.e. a bitmask of nodes
where the data should be always replicated after modification.

9.3.13 starpu_data_prefetch_on_node – Prefetch data to a given
node

[Function]int starpu_data_prefetch_on_node (starpu data handle handle ,
unsigned node , unsigned async)

Issue a prefetch request for a given data to a given node, i.e. requests that the data
be replicated to the given node, so that it is available there for tasks. If the async
parameter is 0, the call will block until the transfer is achieved, else the call will
return as soon as the request is scheduled (which may however have to wait for a task
completion).

9.4 Data Interfaces

9.4.1 Variable Interface

Description:
This variant of starpu_data_register uses the variable interface, i.e. for a
mere single variable. ptr is the address of the variable, and elemsize is the
size of the variable.

Prototype: void starpu_variable_data_register(starpu_data_handle *handle,

uint32_t home_node, uintptr_t ptr, size_t elemsize);

Example: � �
float var;

starpu_data_handle var_handle;

starpu_variable_data_register(&var_handle, 0, (uintptr_t)&var, sizeof(var));
 	

Chapter 9: StarPU API 55

9.4.2 Vector Interface

Description:
This variant of starpu_data_register uses the vector interface, i.e. for mere
arrays of elements. ptr is the address of the first element in the home node. nx
is the number of elements in the vector. elemsize is the size of each element.

Prototype: void starpu_vector_data_register(starpu_data_handle *handle,

uint32_t home_node, uintptr_t ptr, uint32_t nx, size_t elemsize);

Example: � �
float vector[NX];

starpu_data_handle vector_handle;

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector, NX,

sizeof(vector[0]));
 	
9.4.3 Matrix Interface

Description:
This variant of starpu_data_register uses the matrix interface, i.e. for ma-
trices of elements. ptr is the address of the first element in the home node.
ld is the number of elements between rows. nx is the number of elements in a
row (this can be different from ld if there are extra elements for alignment for
instance). ny is the number of rows. elemsize is the size of each element.

Prototype: void starpu_matrix_data_register(starpu_data_handle *handle,

uint32_t home_node, uintptr_t ptr, uint32_t ld, uint32_t nx,

uint32_t ny, size_t elemsize);

Example: � �
float *matrix;

starpu_data_handle matrix_handle;

matrix = (float*)malloc(width * height * sizeof(float));

starpu_matrix_data_register(&matrix_handle, 0, (uintptr_t)matrix,

width, width, height, sizeof(float));
 	
9.4.4 3D Matrix Interface

Description:
This variant of starpu_data_register uses the 3D matrix interface. ptr is
the address of the array of first element in the home node. ldy is the number of
elements between rows. ldz is the number of rows between z planes. nx is the
number of elements in a row (this can be different from ldy if there are extra
elements for alignment for instance). ny is the number of rows in a z plane
(likewise with ldz). nz is the number of z planes. elemsize is the size of each
element.

Prototype: void starpu_block_data_register(starpu_data_handle *handle,

uint32_t home_node, uintptr_t ptr, uint32_t ldy, uint32_t ldz,

uint32_t nx, uint32_t ny, uint32_t nz, size_t elemsize);

56 StarPU Handbook

Example: � �
float *block;

starpu_data_handle block_handle;

block = (float*)malloc(nx*ny*nz*sizeof(float));

starpu_block_data_register(&block_handle, 0, (uintptr_t)block,

nx, nx*ny, nx, ny, nz, sizeof(float));
 	
9.4.5 BCSR Interface for Sparse Matrices (Blocked Compressed

Sparse Row Representation)

[Function]void starpu_bcsr_data_register (starpu data handle *handle ,
uint32 t home_node , uint32 t nnz , uint32 t nrow , uintptr t nzval , uint32 t
*colind , uint32 t *rowptr , uint32 t firstentry , uint32 t r , uint32 t c ,
size t elemsize)

This variant of starpu_data_register uses the BCSR sparse matrix interface.
TODO

9.4.6 CSR Interface for Sparse Matrices (Compressed Sparse Row
Representation)

[Function]void starpu_csr_data_register (starpu data handle *handle ,
uint32 t home_node , uint32 t nnz , uint32 t nrow , uintptr t nzval , uint32 t
*colind , uint32 t *rowptr , uint32 t firstentry , size t elemsize)

This variant of starpu_data_register uses the CSR sparse matrix interface. TODO

9.5 Data Partition

9.5.1 struct starpu_data_filter – StarPU filter structure

Description:
The filter structure describes a data partitioning operation, to be given to the
starpu_data_partition function, see Section 9.5.2 [starpu data partition],
page 57 for an example.

Fields:

filter_func:
This function fills the child_interface structure with
interface information for the id-th child of the parent
father_interface (among nparts). void (*filter_func)(void

father_interface, void child_interface, struct

starpu_data_filter *, unsigned id, unsigned nparts);

nchildren:
This is the number of parts to partition the data into.

get_nchildren:
This returns the number of children. This can be used instead
of nchildren when the number of children depends on the

Chapter 9: StarPU API 57

actual data (e.g. the number of blocks in a sparse matrix).
unsigned (*get_nchildren)(struct starpu_data_filter *,

starpu_data_handle initial_handle);

get_child_ops:
In case the resulting children use a different data interface, this
function returns which interface is used by child number id. struct
starpu_data_interface_ops_t *(*get_child_ops)(struct

starpu_data_filter *, unsigned id);

filter_arg:
Some filters take an addition parameter, but this is usually unused.

filter_arg_ptr:
Some filters take an additional array parameter like the sizes of the
parts, but this is usually unused.

9.5.2 starpu data partition – Partition Data

Description:
This requests partitioning one StarPU data initial_handle into several sub-
data according to the filter f

Prototype: void starpu_data_partition(starpu_data_handle initial_handle,

struct starpu_data_filter *f);

Example: � �
struct starpu_data_filter f = {

.filter_func = starpu_vertical_block_filter_func,

.nchildren = nslicesx,

.get_nchildren = NULL,

.get_child_ops = NULL

};

starpu_data_partition(A_handle, &f);
 	
9.5.3 starpu data unpartition – Unpartition data

Description:
This unapplies one filter, thus unpartitioning the data. The pieces of data are
collected back into one big piece in the gathering_node (usually 0).

Prototype: void starpu_data_unpartition(starpu_data_handle root_data,

uint32_t gathering_node);

Example: � �
starpu_data_unpartition(A_handle, 0);
 	

9.5.4 starpu data get nb children

Description:
This function returns the number of children.

58 StarPU Handbook

Return value:
The number of children.

Prototype: int starpu_data_get_nb_children(starpu_data_handle handle);

9.5.5 starpu data get sub data

Description:
After partitioning a StarPU data by applying a filter, starpu_data_get_sub_
data can be used to get handles for each of the data portions. root_data is
the parent data that was partitioned. depth is the number of filters to traverse
(in case several filters have been applied, to e.g. partition in row blocks, and
then in column blocks), and the subsequent parameters are the indexes.

Return value:
A handle to the subdata.

Prototype: starpu_data_handle starpu_data_get_sub_data(starpu_data_handle

root_data, unsigned depth, ...);

Example: � �
h = starpu_data_get_sub_data(A_handle, 1, taskx);
 	

9.5.6 Predefined filter functions

This section gives a partial list of the predefined partitioning functions. Examples on how
to use them are shown in Section 4.6 [Partitioning Data], page 20. The complete list can
be found in starpu_data_filters.h .

9.5.6.1 Partitioning BCSR Data

[Function]void starpu_canonical_block_filter_bcsr (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

TODO

[Function]void starpu_vertical_block_filter_func_csr (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

TODO

9.5.6.2 Partitioning BLAS interface

[Function]void starpu_block_filter_func (void *father_interface , void
*child_interface , struct starpu data filter *f , unsigned id , unsigned
nparts)

This partitions a dense Matrix into horizontal blocks.

[Function]void starpu_vertical_block_filter_func (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

This partitions a dense Matrix into vertical blocks.

Chapter 9: StarPU API 59

9.5.6.3 Partitioning Vector Data

[Function]void starpu_block_filter_func_vector (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

This partitions a vector into blocks of the same size.

[Function]void starpu_vector_list_filter_func (void *father_interface ,
void *child_interface , struct starpu data filter *f , unsigned id , unsigned
nparts)

This partitions a vector into blocks of sizes given in filter arg ptr.

[Function]void starpu_vector_divide_in_2_filter_func (void
*father_interface , void *child_interface , struct starpu data filter *f ,
unsigned id , unsigned nparts)

This partitions a vector into two blocks, the first block size being given in filter arg .

9.5.6.4 Partitioning Block Data

[Function]void starpu_block_filter_func_block (void *father_interface ,
void *child_interface , struct starpu data filter *f , unsigned id , unsigned
nparts)

This partitions a 3D matrix along the X axis.

9.6 Codelets and Tasks

This section describes the interface to manipulate codelets and tasks.

[Data Type]struct starpu_codelet
The codelet structure describes a kernel that is possibly implemented on various
targets. For compatibility, make sure to initialize the whole structure to zero.

where Indicates which types of processing units are able to execute the codelet.
STARPU_CPU|STARPU_CUDA for instance indicates that the codelet is im-
plemented for both CPU cores and CUDA devices while STARPU_GORDON
indicates that it is only available on Cell SPUs.

cpu_func (optional)
Is a function pointer to the CPU implementation of the codelet. Its proto-
type must be: void cpu_func(void *buffers[], void *cl_arg). The
first argument being the array of data managed by the data management
library, and the second argument is a pointer to the argument passed
from the cl_arg field of the starpu_task structure. The cpu_func field
is ignored if STARPU_CPU does not appear in the where field, it must be
non-null otherwise.

cuda_func (optional)
Is a function pointer to the CUDA implementation of the codelet. This
must be a host-function written in the CUDA runtime API. Its pro-
totype must be: void cuda_func(void *buffers[], void *cl_arg);.
The cuda_func field is ignored if STARPU_CUDA does not appear in the
where field, it must be non-null otherwise.

60 StarPU Handbook

opencl_func (optional)
Is a function pointer to the OpenCL implementation of the codelet.
Its prototype must be: void opencl_func(starpu_data_interface_t

*descr, void *arg);. This pointer is ignored if STARPU_OPENCL does
not appear in the where field, it must be non-null otherwise.

gordon_func (optional)
This is the index of the Cell SPU implementation within the Gordon
library. See Gordon documentation for more details on how to register a
kernel and retrieve its index.

nbuffers Specifies the number of arguments taken by the codelet. These arguments
are managed by the DSM and are accessed from the void *buffers[] ar-
ray. The constant argument passed with the cl_arg field of the starpu_
task structure is not counted in this number. This value should not be
above STARPU_NMAXBUFS.

model (optional)
This is a pointer to the task duration performance model associated to
this codelet. This optional field is ignored when set to NULL.

TODO

power_model (optional)
This is a pointer to the task power consumption performance model asso-
ciated to this codelet. This optional field is ignored when set to NULL. In
the case of parallel codelets, this has to account for all processing units
involved in the parallel execution.

TODO

[Data Type]struct starpu_task
The starpu_task structure describes a task that can be offloaded on the various pro-
cessing units managed by StarPU. It instantiates a codelet. It can either be allocated
dynamically with the starpu_task_create method, or declared statically. In the
latter case, the programmer has to zero the starpu_task structure and to fill the
different fields properly. The indicated default values correspond to the configuration
of a task allocated with starpu_task_create.

cl Is a pointer to the corresponding starpu_codelet data structure. This
describes where the kernel should be executed, and supplies the appro-
priate implementations. When set to NULL, no code is executed during
the tasks, such empty tasks can be useful for synchronization purposes.

buffers Is an array of starpu_buffer_descr_t structures. It describes the differ-
ent pieces of data accessed by the task, and how they should be accessed.
The starpu_buffer_descr_t structure is composed of two fields, the
handle field specifies the handle of the piece of data, and the mode field
is the required access mode (eg STARPU_RW). The number of entries in
this array must be specified in the nbuffers field of the starpu_codelet
structure, and should not excede STARPU_NMAXBUFS. If unsufficient, this
value can be set with the --enable-maxbuffers option when configuring
StarPU.

Chapter 9: StarPU API 61

cl_arg (optional; default: NULL)
This pointer is passed to the codelet through the second argument of the
codelet implementation (e.g. cpu_func or cuda_func). In the specific
case of the Cell processor, see the cl_arg_size argument.

cl_arg_size (optional, Cell-specific)
In the case of the Cell processor, the cl_arg pointer is not directly given
to the SPU function. A buffer of size cl_arg_size is allocated on the
SPU. This buffer is then filled with the cl_arg_size bytes starting at
address cl_arg. In this case, the argument given to the SPU codelet is
therefore not the cl_arg pointer, but the address of the buffer in local
store (LS) instead. This field is ignored for CPU, CUDA and OpenCL
codelets, where the cl_arg pointer is given as such.

callback_func (optional) (default: NULL)
This is a function pointer of prototype void (*f)(void *) which specifies
a possible callback. If this pointer is non-null, the callback function is
executed on the host after the execution of the task. The callback is
passed the value contained in the callback_arg field. No callback is
executed if the field is set to NULL.

callback_arg (optional) (default: NULL)
This is the pointer passed to the callback function. This field is ignored
if the callback_func is set to NULL.

use_tag (optional) (default: 0)
If set, this flag indicates that the task should be associated with the tag
contained in the tag_id field. Tag allow the application to synchronize
with the task and to express task dependencies easily.

tag_id This fields contains the tag associated to the task if the use_tag field was
set, it is ignored otherwise.

synchronous

If this flag is set, the starpu_task_submit function is blocking and re-
turns only when the task has been executed (or if no worker is able to
process the task). Otherwise, starpu_task_submit returns immediately.

priority (optional) (default: STARPU_DEFAULT_PRIO)
This field indicates a level of priority for the task. This is an integer
value that must be set between the return values of the starpu_sched_

get_min_priority function for the least important tasks, and that of
the starpu_sched_get_max_priority for the most important tasks (in-
cluded). The STARPU_MIN_PRIO and STARPU_MAX_PRIO macros are pro-
vided for convenience and respectively returns value of starpu_sched_
get_min_priority and starpu_sched_get_max_priority. Default pri-
ority is STARPU_DEFAULT_PRIO, which is always defined as 0 in order to
allow static task initialization. Scheduling strategies that take priorities
into account can use this parameter to take better scheduling decisions,
but the scheduling policy may also ignore it.

62 StarPU Handbook

execute_on_a_specific_worker (default: 0)
If this flag is set, StarPU will bypass the scheduler and directly affect this
task to the worker specified by the workerid field.

workerid (optional)
If the execute_on_a_specific_worker field is set, this field indicates
which is the identifier of the worker that should process this task (as
returned by starpu_worker_get_id). This field is ignored if execute_
on_a_specific_worker field is set to 0.

detach (optional) (default: 1)
If this flag is set, it is not possible to synchronize with the task by the
means of starpu_task_wait later on. Internal data structures are only
guaranteed to be freed once starpu_task_wait is called if the flag is not
set.

destroy (optional) (default: 1)
If this flag is set, the task structure will automatically be freed, either after
the execution of the callback if the task is detached, or during starpu_

task_wait otherwise. If this flag is not set, dynamically allocated data
structures will not be freed until starpu_task_destroy is called explic-
itly. Setting this flag for a statically allocated task structure will result
in undefined behaviour.

predicted (output field)
Predicted duration of the task. This field is only set if the scheduling
strategy used performance models.

[Function]void starpu_task_init (struct starpu task *task)
Initialize task with default values. This function is implicitly called by starpu_task_

create. By default, tasks initialized with starpu_task_init must be deinitialized
explicitly with starpu_task_deinit. Tasks can also be initialized statically, using
the constant STARPU_TASK_INITIALIZER.

[Function]struct starpu_task * starpu_task_create (void)
Allocate a task structure and initialize it with default values. Tasks allocated dynami-
cally with starpu_task_create are automatically freed when the task is terminated.
If the destroy flag is explicitly unset, the resources used by the task are freed by
calling starpu_task_destroy.

[Function]void starpu_task_deinit (struct starpu task *task)
Release all the structures automatically allocated to execute task. This is called
automatically by starpu_task_destroy, but the task structure itself is not freed.
This should be used for statically allocated tasks for instance.

[Function]void starpu_task_destroy (struct starpu task *task)
Free the resource allocated during starpu_task_create and associated with task.
This function can be called automatically after the execution of a task by setting the
destroy flag of the starpu_task structure (default behaviour). Calling this function
on a statically allocated task results in an undefined behaviour.

Chapter 9: StarPU API 63

[Function]int starpu_task_wait (struct starpu task *task)
This function blocks until task has been executed. It is not possible to synchronize
with a task more than once. It is not possible to wait for synchronous or detached
tasks.

Upon successful completion, this function returns 0. Otherwise, -EINVAL indicates
that the specified task was either synchronous or detached.

[Function]int starpu_task_submit (struct starpu task *task)
This function submits task to StarPU. Calling this function does not mean that the
task will be executed immediately as there can be data or task (tag) dependencies
that are not fulfilled yet: StarPU will take care of scheduling this task with respect
to such dependencies. This function returns immediately if the synchronous field of
the starpu_task structure was set to 0, and block until the termination of the task
otherwise. It is also possible to synchronize the application with asynchronous tasks
by the means of tags, using the starpu_tag_wait function for instance.

In case of success, this function returns 0, a return value of -ENODEV means that there
is no worker able to process this task (e.g. there is no GPU available and this task is
only implemented for CUDA devices).

[Function]int starpu_task_wait_for_all (void)
This function blocks until all the tasks that were submitted are terminated.

[Function]struct starpu_task * starpu_get_current_task (void)
This function returns the task currently executed by the worker, or NULL if it is
called either from a thread that is not a task or simply because there is no task being
executed at the moment.

[Function]void starpu_display_codelet_stats (struct starpu codelet t *cl)
Output on stderr some statistics on the codelet cl.

9.7 Explicit Dependencies

9.7.1 starpu_task_declare_deps_array – Declare task dependencies

[Function]void starpu_task_declare_deps_array (struct starpu task *task ,
unsigned ndeps , struct starpu task *task_array [])

Declare task dependencies between a task and an array of tasks of length ndeps. This
function must be called prior to the submission of the task, but it may called after
the submission or the execution of the tasks in the array provided the tasks are still
valid (ie. they were not automatically destroyed). Calling this function on a task
that was already submitted or with an entry of task array that is not a valid task
anymore results in an undefined behaviour. If ndeps is null, no dependency is added.
It is possible to call starpu_task_declare_deps_array multiple times on the same
task, in this case, the dependencies are added. It is possible to have redundancy in
the task dependencies.

64 StarPU Handbook

9.7.2 starpu_tag_t – Task logical identifier

Description:
It is possible to associate a task with a unique “tag” chosen by the application,
and to express dependencies between tasks by the means of those tags. To do
so, fill the tag_id field of the starpu_task structure with a tag number (can
be arbitrary) and set the use_tag field to 1.

If starpu_tag_declare_deps is called with this tag number, the task will not
be started until the tasks which holds the declared dependency tags are com-
pleted.

9.7.3 starpu_tag_declare_deps – Declare the Dependencies of a
Tag

Description:
Specify the dependencies of the task identified by tag id. The first argument
specifies the tag which is configured, the second argument gives the number of
tag(s) on which id depends. The following arguments are the tags which have
to be terminated to unlock the task.

This function must be called before the associated task is submitted to StarPU
with starpu_task_submit.

Remark Because of the variable arity of starpu_tag_declare_deps, note that the last
arguments must be of type starpu_tag_t: constant values typically need to be
explicitly casted. Using the starpu_tag_declare_deps_array function avoids
this hazard.

Prototype: void starpu_tag_declare_deps(starpu_tag_t id, unsigned ndeps, ...);

Example: � �
/* Tag 0x1 depends on tags 0x32 and 0x52 */

starpu_tag_declare_deps((starpu_tag_t)0x1,

2, (starpu_tag_t)0x32, (starpu_tag_t)0x52);
 	
9.7.4 starpu_tag_declare_deps_array – Declare the Dependencies

of a Tag

Description:
This function is similar to starpu_tag_declare_deps, except that its does not
take a variable number of arguments but an array of tags of size ndeps.

Prototype: void starpu_tag_declare_deps_array(starpu_tag_t id, unsigned

ndeps, starpu_tag_t *array);

Example:

Chapter 9: StarPU API 65

� �
/* Tag 0x1 depends on tags 0x32 and 0x52 */

starpu_tag_t tag_array[2] = {0x32, 0x52};

starpu_tag_declare_deps_array((starpu_tag_t)0x1, 2, tag_array);
 	
9.7.5 starpu_tag_wait – Block until a Tag is terminated

[Function]void starpu_tag_wait (starpu tag t id)
This function blocks until the task associated to tag id has been executed. This
is a blocking call which must therefore not be called within tasks or callbacks, but
only from the application directly. It is possible to synchronize with the same tag
multiple times, as long as the starpu_tag_remove function is not called. Note that
it is still possible to synchronize with a tag associated to a task which starpu_task

data structure was freed (e.g. if the destroy flag of the starpu_task was enabled).

9.7.6 starpu_tag_wait_array – Block until a set of Tags is
terminated

[Function]void starpu_tag_wait_array (unsigned ntags , starpu tag t *id)
This function is similar to starpu_tag_wait except that it blocks until all the ntags
tags contained in the id array are terminated.

9.7.7 starpu_tag_remove – Destroy a Tag

[Function]void starpu_tag_remove (starpu tag t id)
This function releases the resources associated to tag id. It can be called once the
corresponding task has been executed and when there is no other tag that depend on
this tag anymore.

9.7.8 starpu_tag_notify_from_apps – Feed a Tag explicitly

[Function]void starpu_tag_notify_from_apps (starpu tag t id)
This function explicitly unlocks tag id. It may be useful in the case of applications
which execute part of their computation outside StarPU tasks (e.g. third-party li-
braries). It is also provided as a convenient tool for the programmer, for instance to
entirely construct the task DAG before actually giving StarPU the opportunity to
execute the tasks.

9.8 Implicit Data Dependencies

In this section, we describe how StarPUmakes it possible to insert implicit task dependencies
in order to enforce sequential data consistency. When this data consistency is enabled on
a specific data handle, any data access will appear as sequentially consistent from the
application. For instance, if the application submits two tasks that access the same piece
of data in read-only mode, and then a third task that access it in write mode, dependencies
will be added between the two first tasks and the third one. Implicit data dependencies are
also inserted in the case of data accesses from the application.

66 StarPU Handbook

9.8.1 starpu_data_set_default_sequential_consistency_flag – Set
default sequential consistency flag

[Function]void starpu_data_set_default_sequential_consistency_flag
(unsigned flag)

Set the default sequential consistency flag. If a non-zero value is passed, a sequential
data consistency will be enforced for all handles registered after this function call,
otherwise it is disabled. By default, StarPU enables sequential data consistency. It
is also possible to select the data consistency mode of a specific data handle with the
starpu_data_set_sequential_consistency_flag function.

9.8.2 starpu_data_get_default_sequential_consistency_flag – Get
current default sequential consistency flag

[Function]unsigned
starpu_data_set_default_sequential_consistency_flag (void)

This function returns the current default sequential consistency flag.

9.8.3 starpu_data_set_sequential_consistency_flag – Set data
sequential consistency mode

[Function]void starpu_data_set_sequential_consistency_flag
(starpu data handle handle , unsigned flag)

Select the data consistency mode associated to a data handle. The consistency mode
set using this function has the priority over the default mode which can be set with
starpu_data_set_sequential_consistency_flag.

9.9 Performance Model API

9.9.1 starpu_load_history_debug

[Function]int starpu_load_history_debug (const char *symbol , struct
starpu perfmodel t *model)

TODO

9.9.2 starpu_perfmodel_debugfilepath

[Function]void starpu_perfmodel_debugfilepath (struct starpu perfmodel t
*model , enum starpu perf archtype arch , char *path , size t maxlen)

TODO

9.9.3 starpu_perfmodel_get_arch_name

[Function]void starpu_perfmodel_get_arch_name (enum starpu perf archtype
arch , char *archname , size t maxlen)

TODO

9.9.4 starpu_force_bus_sampling

[Function]void starpu_force_bus_sampling (void)
This forces sampling the bus performance model again.

Chapter 9: StarPU API 67

9.10 Profiling API

9.10.1 starpu_profiling_status_set – Set current profiling status

Description:
Thie function sets the profiling status. Profiling is activated by passing STARPU_
PROFILING_ENABLE in status. Passing STARPU_PROFILING_DISABLE disables
profiling. Calling this function resets all profiling measurements. When profil-
ing is enabled, the profiling_info field of the struct starpu_task structure
points to a valid struct starpu_task_profiling_info structure containing
information about the execution of the task.

Return value:
Negative return values indicate an error, otherwise the previous status is re-
turned.

Prototype: int starpu_profiling_status_set(int status);

9.10.2 starpu_profiling_status_get – Get current profiling status

[Function]int starpu_profiling_status_get (void)
Return the current profiling status or a negative value in case there was an error.

9.10.3 struct starpu_task_profiling_info – Task profiling
information

Description:
This structure contains information about the execution of a task. It is acces-
sible from the .profiling_info field of the starpu_task structure if profiling
was enabled.

Fields:

submit_time:
Date of task submission (relative to the initialization of StarPU).

start_time:
Date of task execution beginning (relative to the initialization of
StarPU).

end_time: Date of task execution termination (relative to the initialization of
StarPU).

workerid: Identifier of the worker which has executed the task.

9.10.4 struct starpu_worker_profiling_info – Worker profiling
information

Description:
This structure contains the profiling information associated to a worker.

Fields:

start_time:
Starting date for the reported profiling measurements.

68 StarPU Handbook

total_time:
Duration of the profiling measurement interval.

executing_time:
Time spent by the worker to execute tasks during the profiling
measurement interval.

sleeping_time:
Time spent idling by the worker during the profiling measurement
interval.

executed_tasks:
Number of tasks executed by the worker during the profiling mea-
surement interval.

9.10.5 starpu_worker_get_profiling_info – Get worker profiling
info

Description:
Get the profiling info associated to the worker identified by workerid, and reset
the profiling measurements. If the worker_info argument is NULL, only reset
the counters associated to worker workerid.

Return value:
Upon successful completion, this function returns 0. Otherwise, a negative
value is returned.

Prototype: int starpu_worker_get_profiling_info(int workerid, struct

starpu_worker_profiling_info *worker_info);

9.10.6 struct starpu_bus_profiling_info – Bus profiling
information

Description:
TODO

Fields:

start_time:
TODO

total_time:
TODO

transferred_bytes:
TODO

transfer_count:
TODO

9.10.7 starpu_bus_get_count

[Function]int starpu_bus_get_count (void)
TODO

Chapter 9: StarPU API 69

9.10.8 starpu_bus_get_id

[Function]int starpu_bus_get_id (int src , int dst)
TODO

9.10.9 starpu_bus_get_src

[Function]int starpu_bus_get_src (int busid)
TODO

9.10.10 starpu_bus_get_dst

[Function]int starpu_bus_get_dst (int busid)
TODO

9.10.11 starpu_timing_timespec_delay_us

[Function]double starpu_timing_timespec_delay_us (struct timespec *start ,
struct timespec *end)

TODO

9.10.12 starpu_timing_timespec_to_us

[Function]double starpu_timing_timespec_to_us (struct timespec *ts)
TODO

9.10.13 starpu_bus_profiling_helper_display_summary

[Function]void starpu_bus_profiling_helper_display_summary (void)
TODO

9.10.14 starpu_worker_profiling_helper_display_summary

[Function]void starpu_worker_profiling_helper_display_summary (void)
TODO

9.11 CUDA extensions

9.11.1 starpu_cuda_get_local_stream – Get current worker’s
CUDA stream

[Function]cudaStream_t * starpu_cuda_get_local_stream (void)
StarPU provides a stream for every CUDA device controlled by StarPU. This function
is only provided for convenience so that programmers can easily use asynchronous op-
erations within codelets without having to create a stream by hand. Note that the ap-
plication is not forced to use the stream provided by starpu_cuda_get_local_stream
and may also create its own streams. Synchronizing with cudaThreadSynchronize()

is allowed, but will reduce the likelihood of having all transfers overlapped.

70 StarPU Handbook

9.11.2 starpu_helper_cublas_init – Initialize CUBLAS on every
CUDA device

[Function]void starpu_helper_cublas_init (void)
The CUBLAS library must be initialized prior to any CUBLAS call. Calling starpu_
helper_cublas_init will initialize CUBLAS on every CUDA device controlled by
StarPU. This call blocks until CUBLAS has been properly initialized on every device.

9.11.3 starpu_helper_cublas_shutdown – Deinitialize CUBLAS on
every CUDA device

[Function]void starpu_helper_cublas_shutdown (void)
This function synchronously deinitializes the CUBLAS library on every CUDA device.

9.12 OpenCL extensions

9.12.1 Enabling OpenCL

On GPU devices which can run both CUDA and OpenCL, CUDA will be enabled by default.
To enable OpenCL, you need either to disable CUDA when configuring StarPU:

% ./configure --disable-cuda

or when running applications:

% STARPU_NCUDA=0 ./application

OpenCL will automatically be started on any device not yet used by CUDA. So on
a machine running 4 GPUS, it is therefore possible to enable CUDA on 2 devices, and
OpenCL on the 2 other devices by doing so:

% STARPU_NCUDA=2 ./application

9.12.2 Compiling OpenCL kernels

Source codes for OpenCL kernels can be stored in a file or in a string. StarPU provides
functions to build the program executable for each available OpenCL device as a cl_program
object. This program executable can then be loaded within a specific queue as explained
in the next section. These are only helpers, Applications can also fill a starpu_opencl_

program array by hand for more advanced use (e.g. different programs on the different
OpenCL devices, for relocation purpose for instance).

9.12.2.1 starpu_opencl_load_opencl_from_file – Compiling
OpenCL source code

[Function]int starpu_opencl_load_opencl_from_file (char
*source_file_name , struct starpu opencl program *opencl_programs ,
const char* build_options)

TODO

Chapter 9: StarPU API 71

9.12.2.2 starpu_opencl_load_opencl_from_string – Compiling
OpenCL source code

[Function]int starpu_opencl_load_opencl_from_string (char
*opencl_program_source , struct starpu opencl program
opencl_programs , const char build_options)

TODO

9.12.2.3 starpu_opencl_unload_opencl – Releasing OpenCL code

[Function]int starpu_opencl_unload_opencl (struct starpu opencl program
*opencl_programs)

TODO

9.12.3 Loading OpenCL kernels

9.12.3.1 starpu_opencl_load_kernel – Loading a kernel

[Function]int starpu_opencl_load_kernel (cl kernel *kernel ,
cl command queue *queue , struct starpu opencl program
*opencl_programs , char *kernel_name , int devid)

TODO

9.12.3.2 starpu_opencl_release_kernel – Releasing a kernel

[Function]int starpu_opencl_release_kernel (cl kernel kernel)
TODO

9.12.4 OpenCL statistics

9.12.4.1 starpu_opencl_collect_stats – Collect statistics on a
kernel execution

[Function]int starpu_opencl_collect_stats (cl event event)
After termination of the kernels, the OpenCL codelet should call this function to pass
it the even returned by clEnqueueNDRangeKernel, to let StarPU collect statistics
about the kernel execution (used cycles, consumed power).

9.13 Cell extensions

nothing yet.

9.14 Miscellaneous helpers

9.14.1 starpu_data_cpy – Copy a data handle into another data
handle

[Function]int starpu_data_cpy (starpu data handle dst_handle ,
starpu data handle src_handle , int asynchronous , void
(*callback_func)(void*), void *callback_arg)

Copy the content of the src handle into the dst handle handle. The asynchronous
parameter indicates whether the function should block or not. In the case of an

72 StarPU Handbook

asynchronous call, it is possible to synchronize with the termination of this operation
either by the means of implicit dependencies (if enabled) or by calling starpu_task_

wait_for_all(). If callback func is not NULL, this callback function is executed after
the handle has been copied, and it is given the callback arg pointer as argument.

9.14.2 starpu_execute_on_each_worker – Execute a function on a
subset of workers

[Function]void starpu_execute_on_each_worker (void (*func)(void *), void
*arg , uint32 t where)

When calling this method, the offloaded function specified by the first argument
is executed by every StarPU worker that may execute the function. The second
argument is passed to the offloaded function. The last argument specifies on which
types of processing units the function should be executed. Similarly to the where field
of the starpu_codelet structure, it is possible to specify that the function should
be executed on every CUDA device and every CPU by passing STARPU_CPU|STARPU_

CUDA. This function blocks until the function has been executed on every appropriate
processing units, so that it may not be called from a callback function for instance.

Chapter 10: Advanced Topics 73

10 Advanced Topics

10.1 Defining a new data interface

10.1.1 struct starpu_data_interface_ops_t – Per-interface methods

Description:
TODO describe all the different fields

10.1.2 struct starpu_data_copy_methods – Per-interface data
transfer methods

Description:
TODO describe all the different fields

10.1.3 An example of data interface

TODO See src/datawizard/interfaces/vector_interface.c for now.

10.2 Defining a new scheduling policy

TODO

A full example showing how to define a new scheduling policy is available in the StarPU
sources in the directory examples/scheduler/.

10.2.1 struct starpu_sched_policy_s – Scheduler methods

Description:
This structure contains all the methods that implement a scheduling policy. An
application may specify which scheduling strategy in the sched_policy field of
the starpu_conf structure passed to the starpu_init function.

Fields:

init_sched:
Initialize the scheduling policy.

deinit_sched:
Cleanup the scheduling policy.

push_task:
Insert a task into the scheduler.

push_prio_task:
Insert a priority task into the scheduler.

push_prio_notify:
Notify the scheduler that a task was pushed on the worker. This
method is called when a task that was explicitely assigned to a
worker is scheduled. This method therefore permits to keep the
state of of the scheduler coherent even when StarPU bypasses the
scheduling strategy.

74 StarPU Handbook

pop_task: Get a task from the scheduler. The mutex associated to the worker
is already taken when this method is called. If this method is
defined as NULL, the worker will only execute tasks from its local
queue. In this case, the push_task method should use the starpu_
push_local_task method to assign tasks to the different workers.

pop_every_task:
Remove all available tasks from the scheduler (tasks are chained by
the means of the prev and next fields of the starpu task structure).
The mutex associated to the worker is already taken when this
method is called.

post_exec_hook (optionnal):
This method is called every time a task has been executed.

policy_name:
Name of the policy (optionnal).

policy_description:
Description of the policy (optionnal).

10.2.2 starpu_worker_set_sched_condition – Specify the condition
variable associated to a worker

[Function]void starpu_worker_set_sched_condition (int workerid ,
pthread cond t *sched_cond , pthread mutex t *sched_mutex)

When there is no available task for a worker, StarPU blocks this worker on a condition
variable. This function specifies which condition variable (and the associated mutex)
should be used to block (and to wake up) a worker. Note that multiple workers may
use the same condition variable. For instance, in the case of a scheduling strategy
with a single task queue, the same condition variable would be used to block and wake
up all workers. The initialization method of a scheduling strategy (init_sched) must
call this function once per worker.

10.2.3 starpu_sched_set_min_priority

[Function]void starpu_sched_set_min_priority (int min_prio)
Defines the minimum priority level supported by the scheduling policy. The default
minimum priority level is the same as the default priority level which is 0 by con-
vention. The application may access that value by calling the starpu_sched_get_

min_priority function. This function should only be called from the initialization
method of the scheduling policy, and should not be used directly from the application.

10.2.4 starpu_sched_set_max_priority

[Function]void starpu_sched_set_min_priority (int max_prio)
Defines the maximum priority level supported by the scheduling policy. The default
maximum priority level is 1. The application may access that value by calling the
starpu_sched_get_max_priority function. This function should only be called from
the initialization method of the scheduling policy, and should not be used directly from
the application.

Chapter 10: Advanced Topics 75

10.2.5 starpu_push_local_task

[Function]int starpu_push_local_task (int workerid , struct starpu task
*task , int back)

The scheduling policy may put tasks directly into a worker’s local queue so that it
is not always necessary to create its own queue when the local queue is sufficient. If
"back" not null, the task is put at the back of the queue where the worker will pop
tasks first. Setting "back" to 0 therefore ensures a FIFO ordering.

10.2.6 Source code� �
static struct starpu_sched_policy_s dummy_sched_policy = {

.init_sched = init_dummy_sched,

.deinit_sched = deinit_dummy_sched,

.push_task = push_task_dummy,

.push_prio_task = NULL,

.pop_task = pop_task_dummy,

.post_exec_hook = NULL,

.pop_every_task = NULL,

.policy_name = "dummy",

.policy_description = "dummy scheduling strategy"

};
 	

Appendix A: Full source code for the ’Scaling a Vector’ example 77

Appendix A Full source code for the ’Scaling a
Vector’ example

A.1 Main application
/*

* This example demonstrates how to use StarPU to scale an array by a factor.

* It shows how to manipulate data with StarPU’s data management library.

* 1- how to declare a piece of data to StarPU (starpu_vector_data_register)

* 2- how to describe which data are accessed by a task (task->buffers[0])

* 3- how a kernel can manipulate the data (buffers[0].vector.ptr)

*/

#include <starpu.h>

#include <starpu_opencl.h>

#define NX 2048

extern void scal_cpu_func(void *buffers[], void *_args);

extern void scal_cuda_func(void *buffers[], void *_args);

extern void scal_opencl_func(void *buffers[], void *_args);

static starpu_codelet cl = {

.where = STARPU_CPU | STARPU_CUDA | STARPU_OPENCL,

/* CPU implementation of the codelet */

.cpu_func = scal_cpu_func,

#ifdef STARPU_USE_CUDA

/* CUDA implementation of the codelet */

.cuda_func = scal_cuda_func,

#endif

#ifdef STARPU_USE_OPENCL

/* OpenCL implementation of the codelet */

.opencl_func = scal_opencl_func,

#endif

.nbuffers = 1

};

#ifdef STARPU_USE_OPENCL

struct starpu_opencl_program programs;

#endif

int main(int argc, char **argv)

{

/* We consider a vector of float that is initialized just as any of C

* data */

float vector[NX];

unsigned i;

for (i = 0; i < NX; i++)

vector[i] = 1.0f;

fprintf(stderr, "BEFORE : First element was %f\n", vector[0]);

/* Initialize StarPU with default configuration */

starpu_init(NULL);

#ifdef STARPU_USE_OPENCL

starpu_opencl_load_opencl_from_file(

"examples/basic_examples/vector_scal_opencl_kernel.cl", &programs, NULL);

#endif

78 StarPU Handbook

/* Tell StaPU to associate the "vector" vector with the "vector_handle"

* identifier. When a task needs to access a piece of data, it should

* refer to the handle that is associated to it.

* In the case of the "vector" data interface:

* - the first argument of the registration method is a pointer to the

* handle that should describe the data

* - the second argument is the memory node where the data (ie. "vector")

* resides initially: 0 stands for an address in main memory, as

* opposed to an adress on a GPU for instance.

* - the third argument is the adress of the vector in RAM

* - the fourth argument is the number of elements in the vector

* - the fifth argument is the size of each element.

*/

starpu_data_handle vector_handle;

starpu_vector_data_register(&vector_handle, 0, (uintptr_t)vector,

NX, sizeof(vector[0]));

float factor = 3.14;

/* create a synchronous task: any call to starpu_task_submit will block

* until it is terminated */

struct starpu_task *task = starpu_task_create();

task->synchronous = 1;

task->cl = &cl;

/* the codelet manipulates one buffer in RW mode */

task->buffers[0].handle = vector_handle;

task->buffers[0].mode = STARPU_RW;

/* an argument is passed to the codelet, beware that this is a

* READ-ONLY buffer and that the codelet may be given a pointer to a

* COPY of the argument */

task->cl_arg = &factor;

task->cl_arg_size = sizeof(factor);

/* execute the task on any eligible computational ressource */

starpu_task_submit(task);

/* StarPU does not need to manipulate the array anymore so we can stop

* monitoring it */

starpu_data_unregister(vector_handle);

#ifdef STARPU_USE_OPENCL

starpu_opencl_unload_opencl(&programs);

#endif

/* terminate StarPU, no task can be submitted after */

starpu_shutdown();

fprintf(stderr, "AFTER First element is %f\n", vector[0]);

return 0;

}

Appendix A: Full source code for the ’Scaling a Vector’ example 79

A.2 CPU Kernel
#include <starpu.h>

/* This kernel takes a buffer and scales it by a constant factor */

void scal_cpu_func(void *buffers[], void *cl_arg)

{

unsigned i;

float *factor = cl_arg;

/*

* The "buffers" array matches the task->buffers array: for instance

* task->buffers[0].handle is a handle that corresponds to a data with

* vector "interface", so that the first entry of the array in the

* codelet is a pointer to a structure describing such a vector (ie.

* struct starpu_vector_interface_s *). Here, we therefore manipulate

* the buffers[0] element as a vector: nx gives the number of elements

* in the array, ptr gives the location of the array (that was possibly

* migrated/replicated), and elemsize gives the size of each elements.

*/

starpu_vector_interface_t *vector = buffers[0];

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(vector);

/* get a pointer to the local copy of the vector : note that we have to

* cast it in (float *) since a vector could contain any type of

* elements so that the .ptr field is actually a uintptr_t */

float *val = (float *)STARPU_VECTOR_GET_PTR(vector);

/* scale the vector */

for (i = 0; i < n; i++)

val[i] *= *factor;

}

A.3 CUDA Kernel
#include <starpu.h>

static __global__ void vector_mult_cuda(float *val, unsigned n,

float factor)

{

unsigned i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n)

val[i] *= factor;

}

extern "C" void scal_cuda_func(void *buffers[], void *_args)

{

float *factor = (float *)_args;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* local copy of the vector pointer */

float *val = (float *)STARPU_VECTOR_GET_PTR(buffers[0]);

unsigned threads_per_block = 64;

unsigned nblocks = (n + threads_per_block-1) / threads_per_block;

vector_mult_cuda<<<nblocks,threads_per_block, 0, starpu_cuda_get_local_stream()>>>(val, n, *factor);

80 StarPU Handbook

cudaStreamSynchronize(starpu_cuda_get_local_stream());

}

A.4 OpenCL Kernel

A.4.1 Invoking the kernel
#include <starpu.h>

#include <starpu_opencl.h>

extern struct starpu_opencl_program programs;

void scal_opencl_func(void *buffers[], void *_args)

{

float *factor = _args;

int id, devid, err;

cl_kernel kernel;

cl_command_queue queue;

cl_event event;

/* length of the vector */

unsigned n = STARPU_VECTOR_GET_NX(buffers[0]);

/* OpenCL copy of the vector pointer */

cl_mem val = (cl_mem)STARPU_VECTOR_GET_PTR(buffers[0]);

id = starpu_worker_get_id();

devid = starpu_worker_get_devid(id);

err = starpu_opencl_load_kernel(&kernel, &queue, &programs, "vector_mult_opencl",

devid);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

err = clSetKernelArg(kernel, 0, sizeof(val), &val);

err |= clSetKernelArg(kernel, 1, sizeof(n), &n);

err |= clSetKernelArg(kernel, 2, sizeof(*factor), factor);

if (err) STARPU_OPENCL_REPORT_ERROR(err);

{

size_t global=n;

size_t local;

size_t s;

cl_device_id device;

starpu_opencl_get_device(devid, &device);

err = clGetKernelWorkGroupInfo (kernel, device, CL_KERNEL_WORK_GROUP_SIZE,

sizeof(local), &local, &s);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

if (local > global) local=global;

err = clEnqueueNDRangeKernel(queue, kernel, 1, NULL, &global, &local, 0,

NULL, &event);

if (err != CL_SUCCESS) STARPU_OPENCL_REPORT_ERROR(err);

}

clFinish(queue);

starpu_opencl_collect_stats(event);

clReleaseEvent(event);

Appendix A: Full source code for the ’Scaling a Vector’ example 81

starpu_opencl_release_kernel(kernel);

}

A.4.2 Source of the kernel
__kernel void vector_mult_opencl(__global float* val, int nx, float factor)

{

const int i = get_global_id(0);

if (i < nx) {

val[i] *= factor;

}

}

Function Index 83

Function Index

starpu_bcsr_data_register 56
starpu_block_filter_func 58
starpu_block_filter_func_block 59
starpu_block_filter_func_vector 59
starpu_bus_get_count . 68
starpu_bus_get_dst . 69
starpu_bus_get_id . 69
starpu_bus_get_src . 69
starpu_bus_profiling_helper_display_summary

. 69
starpu_canonical_block_filter_bcsr 58
starpu_cpu_worker_get_count 49
starpu_csr_data_register 56
starpu_cuda_get_local_stream 69
starpu_cuda_worker_get_count 49
starpu_data_acquire . 53
starpu_data_acquire_cb . 53
starpu_data_cpy . 71
starpu_data_invalidate . 53
starpu_data_prefetch_on_node 54
starpu_data_register . 52
starpu_data_release . 54
starpu_data_set_default_sequential_

consistency_flag . 66
starpu_data_set_sequential_consistency_flag

. 66
starpu_data_set_wt_mask . 54
starpu_data_unregister . 53
starpu_display_codelet_stats 63
starpu_execute_on_each_worker 72
starpu_force_bus_sampling 66
starpu_get_current_task . 63
starpu_helper_cublas_init 70
starpu_helper_cublas_shutdown 70
starpu_insert_task . 23
starpu_load_history_debug 66
starpu_malloc . 51
starpu_mpi_barrier . 34
starpu_mpi_get_data_on_node 37
starpu_mpi_initialize . 33
starpu_mpi_initialize_extended 33
starpu_mpi_insert_task . 37
starpu_mpi_irecv . 33
starpu_mpi_irecv_array_detached_unlock_tag

. 34
starpu_mpi_irecv_detached 34
starpu_mpi_irecv_detached_unlock_tag 34
starpu_mpi_isend . 33
starpu_mpi_isend_array_detached_unlock_tag

. 34

starpu_mpi_isend_detached 33
starpu_mpi_isend_detached_unlock_tag 34
starpu_mpi_recv . 33
starpu_mpi_send . 33
starpu_mpi_shutdown . 33
starpu_mpi_test . 34
starpu_mpi_wait . 34
starpu_opencl_collect_stats 71
starpu_opencl_load_kernel 71
starpu_opencl_load_opencl_from_file 70
starpu_opencl_load_opencl_from_string 71
starpu_opencl_release_kernel 71
starpu_opencl_unload_opencl 71
starpu_opencl_worker_get_count 50
starpu_perfmodel_debugfilepath 66
starpu_perfmodel_get_arch_name 66
starpu_profiling_status_get 67
starpu_push_local_task . 75
starpu_sched_set_min_priority 74
starpu_shutdown . 49
starpu_tag_notify_from_apps 65
starpu_tag_remove . 65
starpu_tag_wait . 65
starpu_tag_wait_array . 65
starpu_task_create . 62
starpu_task_declare_deps_array 63
starpu_task_deinit . 62
starpu_task_destroy . 62
starpu_task_init . 62
starpu_task_submit . 63
starpu_task_wait . 63
starpu_task_wait_for_all 63
starpu_timing_timespec_delay_us 69
starpu_timing_timespec_to_us 69
starpu_vector_divide_in_2_filter_func 59
starpu_vector_list_filter_func 59
starpu_vertical_block_filter_func 58
starpu_vertical_block_filter_func_csr 58
starpu_worker_get_count . 49
starpu_worker_get_count_by_type 49
starpu_worker_get_devid . 50
starpu_worker_get_id . 50
starpu_worker_get_ids_by_type 50
starpu_worker_get_memory_node 51
starpu_worker_get_name . 51
starpu_worker_get_type . 50
starpu_worker_profiling_helper_display_

summary . 69
starpu_worker_set_sched_condition 74

	Preface
	Introduction to StarPU
	Motivation
	StarPU in a Nutshell
	Codelet and Tasks
	StarPU Data Management Library
	Glossary
	Research Papers

	Installing StarPU
	Downloading StarPU
	Getting Sources
	Optional dependencies

	Configuration of StarPU
	Generating Makefiles and configuration scripts
	Running the configuration

	Building and Installing StarPU
	Building
	Sanity Checks
	Installing

	Using StarPU
	Setting flags for compiling and linking applications
	Running a basic StarPU application
	Kernel threads started by StarPU
	Using accelerators

	Basic Examples
	Compiling and linking options
	Hello World
	Required Headers
	Defining a Codelet
	Submitting a Task
	Execution of Hello World

	Manipulating Data: Scaling a Vector
	Source code of Vector Scaling
	Execution of Vector Scaling

	Vector Scaling on an Hybrid CPU/GPU Machine
	Definition of the CUDA Kernel
	Definition of the OpenCL Kernel
	Definition of the Main Code
	Execution of Hybrid Vector Scaling

	Task and Worker Profiling
	Partitioning Data
	Performance model example
	Theoretical lower bound on execution time
	Insert Task Utility
	Debugging
	More examples

	How to optimize performance with StarPU
	Data management
	Task submission
	Task priorities
	Task scheduling policy
	Performance model calibration
	Task distribution vs Data transfer
	Data prefetch
	Power-based scheduling
	Profiling
	CUDA-specific optimizations

	Performance feedback
	On-line performance feedback
	Enabling on-line performance monitoring
	Per-task feedback
	Per-codelet feedback
	Per-worker feedback
	Bus-related feedback

	Off-line performance feedback
	Generating traces with FxT
	Creating a Gantt Diagram
	Creating a DAG with graphviz
	Monitoring activity

	Performance of codelets

	StarPU MPI support
	The API
	Initialisation
	Communication

	Simple Example
	MPI Insert Task Utility

	Configuring StarPU
	Compilation configuration
	Common configuration
	--enable-debug
	--enable-fast
	--enable-verbose
	--enable-coverage

	Configuring workers
	--enable-nmaxcpus=<number>
	--disable-cpu
	--enable-maxcudadev=<number>
	--disable-cuda
	--with-cuda-dir=<path>
	--with-cuda-include-dir=<path>
	--with-cuda-lib-dir=<path>
	--enable-maxopencldev=<number>
	--disable-opencl
	--with-opencl-dir=<path>
	--with-opencl-include-dir=<path>
	--with-opencl-lib-dir=<path>
	--enable-gordon
	--with-gordon-dir=<path>

	Advanced configuration
	--enable-perf-debug
	--enable-model-debug
	--enable-stats
	--enable-maxbuffers=<nbuffers>
	--enable-allocation-cache
	--enable-opengl-render
	--enable-blas-lib=<name>
	--with-magma=<path>
	--with-fxt=<path>
	--with-perf-model-dir=<dir>
	--with-mpicc=<path to mpicc>
	--with-goto-dir=<dir>
	--with-atlas-dir=<dir>
	--with-mkl-cflags=<cflags>
	--with-mkl-ldflags=<ldflags>

	Execution configuration through environment variables
	Configuring workers
	STARPU_NCPUS -- Number of CPU workers
	STARPU_NCUDA -- Number of CUDA workers
	STARPU_NOPENCL -- Number of OpenCL workers
	STARPU_NGORDON -- Number of SPU workers (Cell)
	STARPU_WORKERS_CPUID -- Bind workers to specific CPUs
	STARPU_WORKERS_CUDAID -- Select specific CUDA devices
	STARPU_WORKERS_OPENCLID -- Select specific OpenCL devices

	Configuring the Scheduling engine
	STARPU_SCHED -- Scheduling policy
	STARPU_CALIBRATE -- Calibrate performance models
	STARPU_PREFETCH -- Use data prefetch
	STARPU_SCHED_ALPHA -- Computation factor
	STARPU_SCHED_BETA -- Communication factor

	Miscellaneous and debug
	STARPU_SILENT -- Disable verbose mode
	STARPU_LOGFILENAME -- Select debug file name
	STARPU_FXT_PREFIX -- FxT trace location
	STARPU_LIMIT_GPU_MEM -- Restrict memory size on the GPUs
	STARPU_GENERATE_TRACE -- Generate a Paje trace when StarPU is shut down

	StarPU API
	Initialization and Termination
	starpu_init -- Initialize StarPU
	struct starpu_conf -- StarPU runtime configuration
	starpu_conf_init -- Initialize starpu_conf structure
	starpu_shutdown -- Terminate StarPU

	Workers' Properties
	starpu_worker_get_count -- Get the number of processing units
	starpu_worker_get_count_by_type -- Get the number of processing units of a given type
	starpu_cpu_worker_get_count -- Get the number of CPU controlled by StarPU
	starpu_cuda_worker_get_count -- Get the number of CUDA devices controlled by StarPU
	starpu_opencl_worker_get_count -- Get the number of OpenCL devices controlled by StarPU
	starpu_spu_worker_get_count -- Get the number of Cell SPUs controlled by StarPU
	starpu_worker_get_id -- Get the identifier of the current worker
	starpu_worker_get_ids_by_type -- Get the list of identifiers of workers with a given type
	starpu_worker_get_devid -- Get the device identifier of a worker
	starpu_worker_get_type -- Get the type of processing unit associated to a worker
	starpu_worker_get_name -- Get the name of a worker
	starpu_worker_get_memory_node -- Get the memory node of a worker

	Data Library
	starpu_malloc -- Allocate data and pin it
	starpu_access_mode -- Data access mode
	unsigned memory_node -- Memory node
	starpu_data_handle -- StarPU opaque data handle
	void *interface -- StarPU data interface
	starpu_data_register -- Register a piece of data to StarPU
	starpu_data_unregister -- Unregister a piece of data from StarPU
	starpu_data_invalidate -- Invalidate all data replicates
	starpu_data_acquire -- Access registered data from the application
	starpu_data_acquire_cb -- Access registered data from the application asynchronously
	starpu_data_release -- Release registered data from the application
	starpu_data_set_wt_mask -- Set the Write-Through mask
	starpu_data_prefetch_on_node -- Prefetch data to a given node

	Data Interfaces
	Variable Interface
	Vector Interface
	Matrix Interface
	3D Matrix Interface
	BCSR Interface for Sparse Matrices (Blocked Compressed Sparse Row Representation)
	CSR Interface for Sparse Matrices (Compressed Sparse Row Representation)

	Data Partition
	struct starpu_data_filter -- StarPU filter structure
	starpu_data_partition -- Partition Data
	starpu_data_unpartition -- Unpartition data
	starpu_data_get_nb_children
	starpu_data_get_sub_data
	Predefined filter functions
	Partitioning BCSR Data
	Partitioning BLAS interface
	Partitioning Vector Data
	Partitioning Block Data

	Codelets and Tasks
	Explicit Dependencies
	starpu_task_declare_deps_array -- Declare task dependencies
	starpu_tag_t -- Task logical identifier
	starpu_tag_declare_deps -- Declare the Dependencies of a Tag
	starpu_tag_declare_deps_array -- Declare the Dependencies of a Tag
	starpu_tag_wait -- Block until a Tag is terminated
	starpu_tag_wait_array -- Block until a set of Tags is terminated
	starpu_tag_remove -- Destroy a Tag
	starpu_tag_notify_from_apps -- Feed a Tag explicitly

	Implicit Data Dependencies
	starpu_data_set_default_sequential_consistency_flag -- Set default sequential consistency flag
	starpu_data_get_default_sequential_consistency_flag -- Get current default sequential consistency flag
	starpu_data_set_sequential_consistency_flag -- Set data sequential consistency mode

	Performance Model API
	starpu_load_history_debug
	starpu_perfmodel_debugfilepath
	starpu_perfmodel_get_arch_name
	starpu_force_bus_sampling

	Profiling API
	starpu_profiling_status_set -- Set current profiling status
	starpu_profiling_status_get -- Get current profiling status
	struct starpu_task_profiling_info -- Task profiling information
	struct starpu_worker_profiling_info -- Worker profiling information
	starpu_worker_get_profiling_info -- Get worker profiling info
	struct starpu_bus_profiling_info -- Bus profiling information
	starpu_bus_get_count
	starpu_bus_get_id
	starpu_bus_get_src
	starpu_bus_get_dst
	starpu_timing_timespec_delay_us
	starpu_timing_timespec_to_us
	starpu_bus_profiling_helper_display_summary
	starpu_worker_profiling_helper_display_summary

	CUDA extensions
	starpu_cuda_get_local_stream -- Get current worker's CUDA stream
	starpu_helper_cublas_init -- Initialize CUBLAS on every CUDA device
	starpu_helper_cublas_shutdown -- Deinitialize CUBLAS on every CUDA device

	OpenCL extensions
	Enabling OpenCL
	Compiling OpenCL kernels
	starpu_opencl_load_opencl_from_file -- Compiling OpenCL source code
	starpu_opencl_load_opencl_from_string -- Compiling OpenCL source code
	starpu_opencl_unload_opencl -- Releasing OpenCL code

	Loading OpenCL kernels
	starpu_opencl_load_kernel -- Loading a kernel
	starpu_opencl_release_kernel -- Releasing a kernel

	OpenCL statistics
	starpu_opencl_collect_stats -- Collect statistics on a kernel execution

	Cell extensions
	Miscellaneous helpers
	starpu_data_cpy -- Copy a data handle into another data handle
	starpu_execute_on_each_worker -- Execute a function on a subset of workers

	Advanced Topics
	Defining a new data interface
	struct starpu_data_interface_ops_t -- Per-interface methods
	struct starpu_data_copy_methods -- Per-interface data transfer methods
	An example of data interface

	Defining a new scheduling policy
	struct starpu_sched_policy_s -- Scheduler methods
	starpu_worker_set_sched_condition -- Specify the condition variable associated to a worker
	starpu_sched_set_min_priority
	starpu_sched_set_max_priority
	starpu_push_local_task
	Source code

	Full source code for the 'Scaling a Vector' example
	Main application
	CPU Kernel
	CUDA Kernel
	OpenCL Kernel
	Invoking the kernel
	Source of the kernel

	Function Index

