random-fu-0.2.7.0: Random number generation

Safe HaskellNone
LanguageHaskell98

Data.Random.Distribution.Binomial

Synopsis

Documentation

integralBinomialCDF :: (Integral a, Real b) => a -> b -> a -> Double Source #

integralBinomialPDF :: (Integral a, Real b) => a -> b -> a -> Double Source #

The probability of getting exactly k successes in n trials is given by the probability mass function:

\[ f(k;n,p) = \Pr(X = k) = \binom n k p^k(1-p)^{n-k} \]

Note that in integralBinomialPDF the parameters of the mass function are given first and the range of the random variable distributed according to the binomial distribution is given last. That is, \(f(2;4,0.5)\) is calculated by integralBinomialPDF 4 0.5 2.

integralBinomialLogPdf :: (Integral a, Real b) => a -> b -> a -> Double Source #

We use the method given in "Fast and accurate computation of binomial probabilities, Loader, C", http://octave.1599824.n4.nabble.com/attachment/3829107/0/loader2000Fast.pdf

binomial :: Distribution (Binomial b) a => a -> b -> RVar a Source #

binomialT :: Distribution (Binomial b) a => a -> b -> RVarT m a Source #

data Binomial b a Source #

Constructors

Binomial a b 

Instances

(Real b, Distribution (Binomial b) Integer) => CDF (Binomial b) Integer Source # 
(Real b, Distribution (Binomial b) Int) => CDF (Binomial b) Int Source # 

Methods

cdf :: Binomial b Int -> Int -> Double Source #

(Real b, Distribution (Binomial b) Int8) => CDF (Binomial b) Int8 Source # 

Methods

cdf :: Binomial b Int8 -> Int8 -> Double Source #

(Real b, Distribution (Binomial b) Int16) => CDF (Binomial b) Int16 Source # 

Methods

cdf :: Binomial b Int16 -> Int16 -> Double Source #

(Real b, Distribution (Binomial b) Int32) => CDF (Binomial b) Int32 Source # 

Methods

cdf :: Binomial b Int32 -> Int32 -> Double Source #

(Real b, Distribution (Binomial b) Int64) => CDF (Binomial b) Int64 Source # 

Methods

cdf :: Binomial b Int64 -> Int64 -> Double Source #

(Real b, Distribution (Binomial b) Word) => CDF (Binomial b) Word Source # 

Methods

cdf :: Binomial b Word -> Word -> Double Source #

(Real b, Distribution (Binomial b) Word8) => CDF (Binomial b) Word8 Source # 

Methods

cdf :: Binomial b Word8 -> Word8 -> Double Source #

(Real b, Distribution (Binomial b) Word16) => CDF (Binomial b) Word16 Source # 

Methods

cdf :: Binomial b Word16 -> Word16 -> Double Source #

(Real b, Distribution (Binomial b) Word32) => CDF (Binomial b) Word32 Source # 

Methods

cdf :: Binomial b Word32 -> Word32 -> Double Source #

(Real b, Distribution (Binomial b) Word64) => CDF (Binomial b) Word64 Source # 

Methods

cdf :: Binomial b Word64 -> Word64 -> Double Source #

CDF (Binomial b) Integer => CDF (Binomial b) Float Source # 

Methods

cdf :: Binomial b Float -> Float -> Double Source #

CDF (Binomial b) Integer => CDF (Binomial b) Double Source # 

Methods

cdf :: Binomial b Double -> Double -> Double Source #

(Real b, Distribution (Binomial b) Integer) => PDF (Binomial b) Integer Source # 
(Real b, Distribution (Binomial b) Int) => PDF (Binomial b) Int Source # 
(Real b, Distribution (Binomial b) Int8) => PDF (Binomial b) Int8 Source # 
(Real b, Distribution (Binomial b) Int16) => PDF (Binomial b) Int16 Source # 
(Real b, Distribution (Binomial b) Int32) => PDF (Binomial b) Int32 Source # 
(Real b, Distribution (Binomial b) Int64) => PDF (Binomial b) Int64 Source # 
(Real b, Distribution (Binomial b) Word) => PDF (Binomial b) Word Source # 
(Real b, Distribution (Binomial b) Word8) => PDF (Binomial b) Word8 Source # 
(Real b, Distribution (Binomial b) Word16) => PDF (Binomial b) Word16 Source # 
(Real b, Distribution (Binomial b) Word32) => PDF (Binomial b) Word32 Source # 
(Real b, Distribution (Binomial b) Word64) => PDF (Binomial b) Word64 Source # 
PDF (Binomial b) Integer => PDF (Binomial b) Float Source # 
PDF (Binomial b) Integer => PDF (Binomial b) Double Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Integer Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int8 Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int16 Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int32 Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Int64 Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word8 Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word16 Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word32 Source # 
(Floating b, Ord b, Distribution Beta b, Distribution StdUniform b) => Distribution (Binomial b) Word64 Source # 
Distribution (Binomial b) Integer => Distribution (Binomial b) Float Source # 
Distribution (Binomial b) Integer => Distribution (Binomial b) Double Source #