LORENE
connection_fcart.C
1 /*
2  * Methods of class Connection_fcart.
3  *
4  * (see file connection.h for documentation)
5  *
6  */
7 
8 /*
9  * Copyright (c) 2003-2004 Eric Gourgoulhon & Jerome Novak
10  *
11  * This file is part of LORENE.
12  *
13  * LORENE is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2
15  * as published by the Free Software Foundation.
16  *
17  * LORENE is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with LORENE; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25  *
26  */
27 
28 char connection_fcart_C[] = "$Header: /cvsroot/Lorene/C++/Source/Connection/connection_fcart.C,v 1.14 2014/10/13 08:52:50 j_novak Exp $" ;
29 
30 /*
31  * $Id: connection_fcart.C,v 1.14 2014/10/13 08:52:50 j_novak Exp $
32  * $Log: connection_fcart.C,v $
33  * Revision 1.14 2014/10/13 08:52:50 j_novak
34  * Lorene classes and functions now belong to the namespace Lorene.
35  *
36  * Revision 1.13 2014/10/06 15:13:04 j_novak
37  * Modified #include directives to use c++ syntax.
38  *
39  * Revision 1.12 2004/01/28 13:25:40 j_novak
40  * The ced_mult_r arguments have been suppressed from the Scalar::*dsd* methods.
41  * In the div/mult _r_dzpuis, there is no more default value.
42  *
43  * Revision 1.11 2004/01/04 21:00:50 e_gourgoulhon
44  * Better handling of tensor symmetries in methods p_derive_cov() and
45  * p_divergence() (thanks to the new class Tensor_sym).
46  *
47  * Revision 1.10 2004/01/01 11:24:04 e_gourgoulhon
48  * Full reorganization of method p_derive_cov: the main loop is now
49  * on the indices of the *output* tensor (to take into account
50  * symmetries in the input and output tensors).
51  *
52  * Revision 1.9 2003/12/27 14:59:52 e_gourgoulhon
53  * -- Method derive_cov() suppressed.
54  * -- Change of the position of the derivation index from the first one
55  * to the last one in methods p_derive_cov() and p_divergence().
56  *
57  * Revision 1.8 2003/10/17 13:46:15 j_novak
58  * The argument is now between 1 and 3 (instead of 0->2)
59  *
60  * Revision 1.7 2003/10/16 21:37:08 e_gourgoulhon
61  * Corrected deriv index in divergence.
62  *
63  * Revision 1.6 2003/10/16 15:26:03 e_gourgoulhon
64  * Suppressed unsued variable
65  *
66  * Revision 1.5 2003/10/16 14:21:36 j_novak
67  * The calculation of the divergence of a Tensor is now possible.
68  *
69  * Revision 1.4 2003/10/11 16:45:43 e_gourgoulhon
70  * Suppressed the call to Itbl::set_etat_qcq() after
71  * the construction of the Itbl's.
72  *
73  * Revision 1.3 2003/10/11 14:39:50 e_gourgoulhon
74  * Suppressed declaration of unusued arguments in some methods.
75  *
76  * Revision 1.2 2003/10/06 13:58:46 j_novak
77  * The memory management has been improved.
78  * Implementation of the covariant derivative with respect to the exact Tensor
79  * type.
80  *
81  * Revision 1.1 2003/10/03 14:11:48 e_gourgoulhon
82  * Methods of class Connection_fcart.
83  *
84  *
85  *
86  * $Header: /cvsroot/Lorene/C++/Source/Connection/connection_fcart.C,v 1.14 2014/10/13 08:52:50 j_novak Exp $
87  *
88  */
89 
90 // C++ headers
91 #include "headcpp.h"
92 
93 // C headers
94 #include <cstdlib>
95 
96 // Lorene headers
97 #include "connection.h"
98 
99 
100  //------------------------------//
101  // Constructors //
102  //------------------------------//
103 
104 
105 
106 // Contructor from a Cartesian flat-metric-orthonormal basis
107 
108 namespace Lorene {
110  : Connection_flat(mpi, bi) {
111 
112 }
113 
114 // Copy constructor
116  : Connection_flat(ci) {
117 
118 }
119 
120 
121  //----------------------------//
122  // Destructor //
123  //----------------------------//
124 
125 
127 
128 }
129 
130 
131  //--------------------------------//
132  // Mutators / assignment //
133  //--------------------------------//
134 
135 
137 
138  cout << "Connection_fcart::operator= : not implemented yet !" << endl ;
139  abort() ;
140 
141 }
142 
143 
144 
145  //-----------------------------//
146  // Computational methods //
147  //-----------------------------//
148 
149 // Covariant derivative, returning a pointer.
150 //-------------------------------------------
151 
153 
154  // Notations: suffix 0 in name <=> input tensor
155  // suffix 1 in name <=> output tensor
156 
157  int valence0 = uu.get_valence() ;
158  int valence1 = valence0 + 1 ;
159  int valence1m1 = valence1 - 1 ; // same as valence0, but introduced for
160  // the sake of clarity
161 
162  // Protections
163  // -----------
164  if (valence0 >= 1) {
165  assert(uu.get_triad() == triad) ;
166  }
167 
168  // Creation of the result (pointer)
169  // --------------------------------
170  Tensor* resu ;
171 
172  // If uu is a Scalar, the result is a vector
173  if (valence0 == 0)
174  resu = new Vector(*mp, COV, triad) ;
175  else {
176 
177  // Type of indices of the result :
178  Itbl tipe(valence1) ;
179  const Itbl& tipeuu = uu.get_index_type() ;
180  for (int id = 0; id<valence0; id++) {
181  tipe.set(id) = tipeuu(id) ; // First indices = same as uu
182  }
183  tipe.set(valence1m1) = COV ; // last index is the derivation index
184 
185  // if uu is a Tensor_sym, the result is also a Tensor_sym:
186  const Tensor* puu = &uu ;
187  const Tensor_sym* puus = dynamic_cast<const Tensor_sym*>(puu) ;
188  if ( puus != 0x0 ) { // the input tensor is symmetric
189  resu = new Tensor_sym(*mp, valence1, tipe, *triad,
190  puus->sym_index1(), puus->sym_index2()) ;
191  }
192  else {
193  resu = new Tensor(*mp, valence1, tipe, *triad) ; // no symmetry
194  }
195 
196  }
197 
198  int ncomp1 = resu->get_n_comp() ;
199 
200  Itbl ind1(valence1) ; // working Itbl to store the indices of resu
201  Itbl ind0(valence0) ; // working Itbl to store the indices of uu
202 
203  // Loop on all the components of the output tensor
204  // -----------------------------------------------
205  for (int ic=0; ic<ncomp1; ic++) {
206 
207  // indices corresponding to the component no. ic in the output tensor
208  ind1 = resu->indices(ic) ;
209 
210  // Component no. ic:
211  Scalar& cresu = resu->set(ind1) ;
212 
213  // Indices of the input tensor
214  for (int id = 0; id < valence0; id++) {
215  ind0.set(id) = ind1(id) ;
216  }
217 
218  // Value of last index (derivation index)
219  int k = ind1(valence1m1) ;
220 
221  // Partial derivation with respect to x^k:
222 
223  cresu = (uu(ind0)).deriv(k) ;
224 
225  }
226 
227  // C'est fini !
228  // -----------
229  return resu ;
230 
231 }
232 
233 
234 
235 // Divergence, returning a pointer.
236 //---------------------------------
237 
239 
240  // Notations: suffix 0 in name <=> input tensor
241  // suffix 1 in name <=> output tensor
242 
243  int valence0 = uu.get_valence() ;
244  int valence1 = valence0 - 1 ;
245 
246  // Protections
247  // -----------
248  assert (valence0 >= 1) ;
249  assert (uu.get_triad() == triad) ;
250 
251  // Last index must be contravariant:
252  assert (uu.get_index_type(valence0-1) == CON) ;
253 
254 
255  // Creation of the pointer on the result tensor
256  // --------------------------------------------
257  Tensor* resu ;
258 
259  if (valence0 == 1) // if u is a Vector, the result is a Scalar
260  resu = new Scalar(*mp) ;
261  else {
262 
263  // Type of indices of the result :
264  Itbl tipe(valence1) ;
265  const Itbl& tipeuu = uu.get_index_type() ;
266  for (int id = 0; id<valence1; id++) {
267  tipe.set(id) = tipeuu(id) ; // type of remaining indices =
268  } // same as uu indices
269 
270  if (valence0 == 2) { // if u is a rank 2 tensor, the result is a Vector
271  resu = new Vector(*mp, tipe(0), *triad) ;
272  }
273  else {
274  // if uu is a Tensor_sym, the result might be also a Tensor_sym:
275  const Tensor* puu = &uu ;
276  const Tensor_sym* puus = dynamic_cast<const Tensor_sym*>(puu) ;
277  if ( puus != 0x0 ) { // the input tensor is symmetric
278 
279  if (puus->sym_index2() != valence0 - 1) {
280 
281  // the symmetry is preserved:
282 
283  if (valence1 == 2) {
284  resu = new Sym_tensor(*mp, tipe, *triad) ;
285  }
286  else {
287  resu = new Tensor_sym(*mp, valence1, tipe, *triad,
288  puus->sym_index1(), puus->sym_index2()) ;
289  }
290  }
291  else { // the symmetry is lost:
292 
293  resu = new Tensor(*mp, valence1, tipe, *triad) ;
294  }
295  }
296  else { // no symmetry in the input tensor:
297  resu = new Tensor(*mp, valence1, tipe, *triad) ;
298  }
299  }
300  }
301 
302 
303  int ncomp1 = resu->get_n_comp() ;
304 
305  Itbl ind0(valence0) ; // working Itbl to store the indices of uu
306 
307  Itbl ind1(valence1) ; // working Itbl to store the indices of resu
308 
309  // Loop on all the components of the output tensor
310  for (int ic=0; ic<ncomp1; ic++) {
311 
312  ind1 = resu->indices(ic) ;
313  Scalar& cresu = resu->set(ind1) ;
314  cresu.set_etat_zero() ;
315 
316  for (int k=1; k<=3; k++) {
317 
318  // indices (ind1,k) in the input tensor
319  for (int id = 0; id < valence1; id++) {
320  ind0.set(id) = ind1(id) ;
321  }
322  ind0.set(valence0-1) = k ;
323 
324  cresu += uu(ind0).deriv(k) ; //Addition of dT^i/dx^i
325  }
326 
327  }
328 
329  // C'est fini !
330  // -----------
331  return resu ;
332 
333 }
334 
335 }
int & set(int i)
Read/write of a particular element (index i ) (1D case)
Definition: itbl.h:247
const Map *const mp
Reference mapping.
Definition: connection.h:119
virtual void set_etat_zero()
Sets the logical state to ETATZERO (zero).
Definition: scalar.C:324
Class Connection_flat.
Definition: connection.h:354
int sym_index1() const
Number of the first symmetric index (0<= id_sym1 < valence )
Definition: tensor.h:1149
Lorene prototypes.
Definition: app_hor.h:64
virtual Tensor * p_divergence(const Tensor &tens) const
Computes the divergence of a tensor (with respect to the current connection).
virtual Tensor * p_derive_cov(const Tensor &tens) const
Computes the covariant derivative of a tensor (with respect to the current connection).
Tensor field of valence 0 (or component of a tensorial field).
Definition: scalar.h:387
Base class for coordinate mappings.
Definition: map.h:670
int sym_index2() const
Number of the second symmetric index (id_sym1 < id_sym2 < valence )
Definition: tensor.h:1154
Basic integer array class.
Definition: itbl.h:122
Tensor field of valence 1.
Definition: vector.h:188
const Base_vect * get_triad() const
Returns the vectorial basis (triad) on which the components are defined.
Definition: tensor.h:866
int get_index_type(int i) const
Gives the type (covariant or contravariant) of the index number i .
Definition: tensor.h:886
Class Connection_fcart.
Definition: connection.h:546
void operator=(const Connection_fcart &)
Assignment to another Connection_fcart.
Tensor handling.
Definition: tensor.h:288
int get_valence() const
Returns the valence.
Definition: tensor.h:869
Cartesian vectorial bases (triads).
Definition: base_vect.h:201
Scalar & set(const Itbl &ind)
Returns the value of a component (read/write version).
Definition: tensor.C:654
Connection_fcart(const Map &, const Base_vect_cart &)
Contructor from a Cartesian flat-metric-orthonormal basis.
Symmetric tensors (with respect to two of their arguments).
Definition: tensor.h:1037
const Base_vect *const triad
Triad with respect to which the connection coefficients are defined.
Definition: connection.h:124
Class intended to describe valence-2 symmetric tensors.
Definition: sym_tensor.h:223
virtual ~Connection_fcart()
destructor