This module contains routines and types for dealing with time using a proleptic Gregorian calendar. It's also available for the JavaScript target.
Although the types use nanosecond time resolution, the underlying resolution used by getTime() depends on the platform and backend (JS is limited to millisecond precision).
Examples:
import times, os let time = cpuTime() sleep(100) # replace this with something to be timed echo "Time taken: ",cpuTime() - time echo "My formatted time: ", format(now(), "d MMMM yyyy HH:mm") echo "Using predefined formats: ", getClockStr(), " ", getDateStr() echo "cpuTime() float value: ", cpuTime() echo "An hour from now : ", now() + 1.hours echo "An hour from (UTC) now: ", getTime().utc + initDuration(hours = 1)
Parsing and Formatting Dates
The DateTime type can be parsed and formatted using the different parse and format procedures.
let dt = parse("2000-01-01", "yyyy-MM-dd") echo dt.format("yyyy-MM-dd")
The different format patterns that are supported are documented below.
Pattern | Description | Example |
---|---|---|
d | Numeric value representing the day of the month, it will be either one or two digits long. | 1/04/2012 -> 1 |
dd | Same as above, but is always two digits. | 1/04/2012 -> 01 |
ddd | Three letter string which indicates the day of the week. | Saturday -> Sat |
dddd | Full string for the day of the week. | Saturday -> Saturday |
h | The hours in one digit if possible. Ranging from 1-12. | 5pm -> 5 |
hh | The hours in two digits always. If the hour is one digit 0 is prepended. | 5pm -> 05 |
H | The hours in one digit if possible, ranging from 0-23. | 5pm -> 17 |
HH | The hours in two digits always. 0 is prepended if the hour is one digit. | 5pm -> 17 |
m | The minutes in 1 digit if possible. | 5:30 -> 30 |
mm | Same as above but always 2 digits, 0 is prepended if the minute is one digit. | 5:30 -> 30 |
M | The month in one digit if possible. | September -> 9 |
MM | The month in two digits always. 0 is prepended. | September -> 09 |
MMM | Abbreviated three-letter form of the month. | September -> Sep |
MMMM | Full month string, properly capitalized. | September -> September |
s | Seconds as one digit if possible. | 00:00:06 -> 6 |
ss | Same as above but always two digits. 0 is prepended. | 00:00:06 -> 06 |
t | A when time is in the AM. P when time is in the PM. | 5pm -> P |
tt | Same as above, but AM and PM instead of A and P respectively. | 5pm -> PM |
yy | The last two digits of the year. When parsing, the current century is assumed. | 2012 AD -> 12 |
yyyy | The year, padded to atleast four digits. Is always positive, even when the year is BC. When the year is more than four digits, '+' is prepended. | 2012 AD -> 2012 |
YYYY | The year without any padding. Is always positive, even when the year is BC. | 2012 AD -> 2012 |
uuuu | The year, padded to atleast four digits. Will be negative when the year is BC. When the year is more than four digits, '+' is prepended unless the year is BC. | 2012 AD -> 2012 |
UUUU | The year without any padding. Will be negative when the year is BC. | 2012 AD -> 2012 |
z | Displays the timezone offset from UTC. | GMT+7 -> +7 |
zz | Same as above but with leading 0. | GMT+7 -> +07 |
zzz | Same as above but with :mm where mm represents minutes. | GMT+7 -> +07:00 |
zzzz | Same as above but with :ss where ss represents seconds. | GMT+7 -> +07:00:00 |
g | Era: AD or BC | 300 AD -> AD |
fff | Milliseconds display | 1000000 nanoseconds -> 1 |
ffffff | Microseconds display | 1000000 nanoseconds -> 1000 |
fffffffff | Nanoseconds display | 1000000 nanoseconds -> 1000000 |
Other strings can be inserted by putting them in ''. For example hh'->'mm will give 01->56. The following characters can be inserted without quoting them: : - ( ) / [ ] ,. A literal ' can be specified with ''.
However you don't need to necessarily separate format patterns, a unambiguous format string like yyyyMMddhhmmss is valid too (although only for years in the range 1..9999).
Types
Month = enum mJan = (1, "January"), mFeb = "February", mMar = "March", mApr = "April", mMay = "May", mJun = "June", mJul = "July", mAug = "August", mSep = "September", mOct = "October", mNov = "November", mDec = "December"
- Represents a month. Note that the enum starts at 1, so ord(month) will give the month number in the range [1..12]. Source Edit
WeekDay = enum dMon = "Monday", dTue = "Tuesday", dWed = "Wednesday", dThu = "Thursday", dFri = "Friday", dSat = "Saturday", dSun = "Sunday"
- Represents a weekday. Source Edit
MonthdayRange = range[1 .. 31]
- Source Edit
HourRange = range[0 .. 23]
- Source Edit
MinuteRange = range[0 .. 59]
- Source Edit
SecondRange = range[0 .. 60]
- Source Edit
YeardayRange = range[0 .. 365]
- Source Edit
NanosecondRange = range[0 .. 999999999]
- Source Edit
Time = object seconds: int64 nanosecond: NanosecondRange
- Represents a point in time. Source Edit
DateTime = object of RootObj nanosecond*: NanosecondRange ## The number of nanoseconds after the second, ## in the range 0 to 999_999_999. second*: SecondRange ## The number of seconds after the minute, ## normally in the range 0 to 59, but can ## be up to 60 to allow for a leap second. minute*: MinuteRange ## The number of minutes after the hour, ## in the range 0 to 59. hour*: HourRange ## The number of hours past midnight, ## in the range 0 to 23. monthday*: MonthdayRange ## The day of the month, in the range 1 to 31. month*: Month ## The current month. year*: int ## The current year, using astronomical year numbering ## (meaning that before year 1 is year 0, then year -1 and so on). weekday*: WeekDay ## The current day of the week. yearday*: YeardayRange ## The number of days since January 1, ## in the range 0 to 365. isDst*: bool ## Determines whether DST is in effect. ## Always false for the JavaScript backend. timezone*: Timezone ## The timezone represented as an implementation of ``Timezone``. utcOffset*: int ## The offset in seconds west of UTC, including any offset due to DST. ## Note that the sign of this number is the opposite ## of the one in a formatted offset string like ``+01:00`` ## (which would be parsed into the UTC offset ``-3600``).
- Represents a time in different parts. Although this type can represent leap seconds, they are generally not supported in this module. They are not ignored, but the DateTime's returned by procedures in this module will never have a leap second. Source Edit
TimeInterval = object nanoseconds*: int ## The number of nanoseconds microseconds*: int ## The number of microseconds milliseconds*: int ## The number of milliseconds seconds*: int ## The number of seconds minutes*: int ## The number of minutes hours*: int ## The number of hours days*: int ## The number of days weeks*: int ## The number of weeks months*: int ## The number of months years*: int ## The number of years
- Represents a non-fixed duration of time. Can be used to add and subtract non-fixed time units from a DateTime or Time. TimeInterval doesn't represent a fixed duration of time, since the duration of some units depend on the context (e.g a year can be either 365 or 366 days long). The non-fixed time units are years, months and days. Source Edit
Duration = object seconds: int64 nanosecond: NanosecondRange
- Represents a fixed duration of time. Uses the same time resolution as Time. This type should be prefered over TimeInterval unless non-static time units is needed. Source Edit
TimeUnit = enum Nanoseconds, Microseconds, Milliseconds, Seconds, Minutes, Hours, Days, Weeks, Months, Years
- Different units of time. Source Edit
FixedTimeUnit = range[Nanoseconds .. Weeks]
- Subrange of TimeUnit that only includes units of fixed duration. These are the units that can be represented by a Duration. Source Edit
Timezone = ref object zonedTimeFromTimeImpl: proc (x: Time): ZonedTime {...}{.tags: [], raises: [], gcsafe, locks: 0.} zonedTimeFromAdjTimeImpl: proc (x: Time): ZonedTime {...}{.tags: [], raises: [], gcsafe, locks: 0.} name: string
- Timezone interface for supporting DateTime's of arbritary timezones. The times module only supplies implementations for the systems local time and UTC. Source Edit
ZonedTime = object time*: Time ## The point in time being represented. utcOffset*: int ## The offset in seconds west of UTC, ## including any offset due to DST. isDst*: bool ## Determines whether DST is in effect.
- Represents a point in time with an associated UTC offset and DST flag. This type is only used for implementing timezones. Source Edit
DurationParts = array[FixedTimeUnit, int64]
- Source Edit
TimeIntervalParts = array[TimeUnit, int]
- Source Edit
TimeFormat = object patterns: seq[byte] ## \ ## Contains the patterns encoded as bytes. ## Literal values are encoded in a special way. ## They start with ``Lit.byte``, then the length of the literal, then the ## raw char values of the literal. For example, the literal `foo` would ## be encoded as ``@[Lit.byte, 3.byte, 'f'.byte, 'o'.byte, 'o'.byte]``. formatStr: string
- Represents a format for parsing and printing time types. Source Edit
Procs
proc convert[T: SomeInteger](unitFrom, unitTo: FixedTimeUnit; quantity: T): T {...}{.inline.}
-
Convert a quantity of some duration unit to another duration unit.
Examples:
doAssert convert(Days, Hours, 2) == 48 doAssert convert(Days, Weeks, 13) == 1 doAssert convert(Seconds, Milliseconds, -1) == -1000
Source Edit proc nanosecond(time: Time): NanosecondRange {...}{.raises: [], tags: [].}
- Get the fractional part of a Time as the number of nanoseconds of the second. Source Edit
proc weeks(dur: Duration): int64 {...}{.inline, raises: [], tags: [].}
- Number of whole weeks represented by the duration. Source Edit
proc days(dur: Duration): int64 {...}{.inline, raises: [], tags: [].}
- Number of whole days represented by the duration. Source Edit
proc minutes(dur: Duration): int64 {...}{.inline, raises: [], tags: [].}
- Number of whole minutes represented by the duration. Source Edit
proc hours(dur: Duration): int64 {...}{.inline, raises: [], tags: [].}
- Number of whole hours represented by the duration. Source Edit
proc seconds(dur: Duration): int64 {...}{.inline, raises: [], tags: [].}
- Number of whole seconds represented by the duration. Source Edit
proc milliseconds(dur: Duration): int {...}{.inline, raises: [], tags: [].}
-
Number of whole milliseconds represented by the fractional part of the duration.
Examples:
let dur = initDuration(seconds = 1, milliseconds = 1) doAssert dur.milliseconds == 1
Source Edit proc microseconds(dur: Duration): int {...}{.inline, raises: [], tags: [].}
-
Number of whole microseconds represented by the fractional part of the duration.
Examples:
let dur = initDuration(seconds = 1, microseconds = 1) doAssert dur.microseconds == 1
Source Edit proc nanoseconds(dur: Duration): int {...}{.inline, raises: [], tags: [].}
-
Number of whole nanoseconds represented by the fractional part of the duration.
Examples:
let dur = initDuration(seconds = 1, nanoseconds = 1) doAssert dur.nanoseconds == 1
Source Edit proc fractional(dur: Duration): Duration {...}{.inline, raises: [], tags: [].}
-
The fractional part of duration, as a duration.
Examples:
let dur = initDuration(seconds = 1, nanoseconds = 5) doAssert dur.fractional == initDuration(nanoseconds = 5)
Source Edit proc fromUnix(unix: int64): Time {...}{.gcsafe, locks: 0, tags: [], raises: [], noSideEffect.}
-
Convert a unix timestamp (seconds since 1970-01-01T00:00:00Z) to a Time.
Examples:
doAssert $fromUnix(0).utc == "1970-01-01T00:00:00Z"
Source Edit proc toUnix(t: Time): int64 {...}{.gcsafe, locks: 0, tags: [], raises: [], noSideEffect.}
-
Convert t to a unix timestamp (seconds since 1970-01-01T00:00:00Z).
Examples:
doAssert fromUnix(0).toUnix() == 0
Source Edit proc fromWinTime(win: int64): Time {...}{.raises: [], tags: [].}
- Convert a Windows file time (100-nanosecond intervals since 1601-01-01T00:00:00Z) to a Time. Source Edit
proc toWinTime(t: Time): int64 {...}{.raises: [], tags: [].}
- Convert t to a Windows file time (100-nanosecond intervals since 1601-01-01T00:00:00Z). Source Edit
proc isLeapYear(year: int): bool {...}{.raises: [], tags: [].}
- Returns true if year is a leap year. Source Edit
proc getDaysInMonth(month: Month; year: int): int {...}{.raises: [], tags: [].}
- Get the number of days in a month of a year. Source Edit
proc getDaysInYear(year: int): int {...}{.raises: [], tags: [].}
- Get the number of days in a year Source Edit
proc getDayOfYear(monthday: MonthdayRange; month: Month; year: int): YeardayRange {...}{. tags: [], raises: [], gcsafe, locks: 0.}
- Returns the day of the year. Equivalent with initDateTime(monthday, month, year, 0, 0, 0).yearday. Source Edit
proc getDayOfWeek(monthday: MonthdayRange; month: Month; year: int): WeekDay {...}{.tags: [], raises: [], gcsafe, locks: 0.}
- Returns the day of the week enum from day, month and year. Equivalent with initDateTime(monthday, month, year, 0, 0, 0).weekday. Source Edit
proc initDuration(nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days, weeks: int64 = 0): Duration {...}{.tags: [], raises: [], gcsafe, locks: 0, noSideEffect.}
-
Examples:
let dur = initDuration(seconds = 1, milliseconds = 1) doAssert dur.milliseconds == 1 doAssert dur.seconds == 1
Source Edit proc toParts(dur: Duration): DurationParts {...}{.raises: [], tags: [].}
-
Converts a duration into an array consisting of fixed time units.
Each value in the array gives information about a specific unit of time, for example result[Days] gives a count of days.
This procedure is useful for converting Duration values to strings.
Examples:
var dp = toParts(initDuration(weeks = 2, days = 1)) doAssert dp[Days] == 1 doAssert dp[Weeks] == 2 dp = toParts(initDuration(days = -1)) doAssert dp[Days] == -1
Source Edit proc `$`(dur: Duration): string {...}{.raises: [], tags: [].}
-
Human friendly string representation of Duration.
Examples:
doAssert $initDuration(seconds = 2) == "2 seconds" doAssert $initDuration(weeks = 1, days = 2) == "1 week and 2 days" doAssert $initDuration(hours = 1, minutes = 2, seconds = 3) == "1 hour, 2 minutes, and 3 seconds" doAssert $initDuration(milliseconds = -1500) == "-1 second and -500 milliseconds"
Source Edit proc `+`(a, b: Duration): Duration {...}{.raises: [], tags: [].}
-
Add two durations together.
Examples:
doAssert initDuration(seconds = 1) + initDuration(days = 1) == initDuration(seconds = 1, days = 1)
Source Edit proc `-`(a, b: Duration): Duration {...}{.raises: [], tags: [].}
-
Subtract a duration from another.
Examples:
doAssert initDuration(seconds = 1, days = 1) - initDuration(seconds = 1) == initDuration(days = 1)
Source Edit proc `-`(a: Duration): Duration {...}{.raises: [], tags: [].}
-
Reverse a duration.
Examples:
doAssert -initDuration(seconds = 1) == initDuration(seconds = -1)
Source Edit proc `<`(a, b: Duration): bool {...}{.raises: [], tags: [].}
-
Note that a duration can be negative, so even if a < b is true a might represent a larger absolute duration. Use abs(a) < abs(b) to compare the absolute duration.
Examples:
doAssert initDuration(seconds = 1) < initDuration(seconds = 2) doAssert initDuration(seconds = -2) < initDuration(seconds = 1)
Source Edit proc `<=`(a, b: Duration): bool {...}{.raises: [], tags: [].}
- Source Edit
proc `==`(a, b: Duration): bool {...}{.raises: [], tags: [].}
- Source Edit
proc `*`(a: int64; b: Duration): Duration {...}{.raises: [], tags: [].}
-
Multiply a duration by some scalar.
Examples:
doAssert 5 * initDuration(seconds = 1) == initDuration(seconds = 5)
Source Edit proc `*`(a: Duration; b: int64): Duration {...}{.raises: [], tags: [].}
-
Multiply a duration by some scalar.
Examples:
doAssert initDuration(seconds = 1) * 5 == initDuration(seconds = 5)
Source Edit proc `div`(a: Duration; b: int64): Duration {...}{.raises: [], tags: [].}
-
Integer division for durations.
Examples:
doAssert initDuration(seconds = 3) div 2 == initDuration(milliseconds = 1500) doAssert initDuration(nanoseconds = 3) div 2 == initDuration(nanoseconds = 1)
Source Edit proc initTime(unix: int64; nanosecond: NanosecondRange): Time {...}{.tags: [], raises: [], gcsafe, locks: 0, noSideEffect.}
- Create a Time from a unix timestamp and a nanosecond part. Source Edit
proc `-`(a, b: Time): Duration {...}{.extern: "ntDiffTime", raises: [], tags: [].}
- Computes the duration between two points in time. Source Edit
proc `+`(a: Time; b: Duration): Time {...}{.extern: "ntAddTime", raises: [], tags: [].}
-
Add a duration of time to a Time.
Examples:
doAssert (fromUnix(0) + initDuration(seconds = 1)) == fromUnix(1)
Source Edit proc `-`(a: Time; b: Duration): Time {...}{.extern: "ntSubTime", raises: [], tags: [].}
-
Subtracts a duration of time from a Time.
Examples:
doAssert (fromUnix(0) - initDuration(seconds = 1)) == fromUnix(-1)
Source Edit proc `<`(a, b: Time): bool {...}{.extern: "ntLtTime", raises: [], tags: [].}
- Returns true iff a < b, that is iff a happened before b. Source Edit
proc `<=`(a, b: Time): bool {...}{.extern: "ntLeTime", raises: [], tags: [].}
- Returns true iff a <= b. Source Edit
proc `==`(a, b: Time): bool {...}{.extern: "ntEqTime", raises: [], tags: [].}
- Returns true if a == b, that is if both times represent the same point in time. Source Edit
proc high(typ: typedesc[Time]): Time
- Source Edit
proc low(typ: typedesc[Time]): Time
- Source Edit
proc high(typ: typedesc[Duration]): Duration
- Get the longest representable duration. Source Edit
proc low(typ: typedesc[Duration]): Duration
- Get the longest representable duration of negative direction. Source Edit
proc abs(a: Duration): Duration {...}{.raises: [], tags: [].}
-
Examples:
doAssert initDuration(milliseconds = -1500).abs == initDuration(milliseconds = 1500)
Source Edit proc toTime(dt: DateTime): Time {...}{.tags: [], raises: [], gcsafe, locks: 0.}
- Converts a broken-down time structure to calendar time representation. Source Edit
proc newTimezone(name: string; zonedTimeFromTimeImpl: proc (time: Time): ZonedTime {...}{. tags: [], raises: [], gcsafe, locks: 0.}; zonedTimeFromAdjTimeImpl: proc ( adjTime: Time): ZonedTime {...}{.tags: [], raises: [], gcsafe, locks: 0.}): Timezone {...}{. raises: [], tags: [].}
-
Create a new Timezone.
zonedTimeFromTimeImpl and zonedTimeFromAdjTimeImpl is used as the underlying implementations for zonedTimeFromTime and zonedTimeFromAdjTime.
If possible, the name parameter should match the name used in the tz database. If the timezone doesn't exist in the tz database, or if the timezone name is unknown, then any string that describes the timezone unambiguously can be used. Note that the timezones name is used for checking equality!
Examples:
proc utcTzInfo(time: Time): ZonedTime = ZonedTime(utcOffset: 0, isDst: false, time: time) let utc = newTimezone("Etc/UTC", utcTzInfo, utcTzInfo)
Source Edit proc name(zone: Timezone): string {...}{.raises: [], tags: [].}
-
The name of the timezone.
If possible, the name will be the name used in the tz database. If the timezone doesn't exist in the tz database, or if the timezone name is unknown, then any string that describes the timezone unambiguously might be used. For example, the string "LOCAL" is used for the systems local timezone.
See also: https://en.wikipedia.org/wiki/Tz_database
Source Edit proc zonedTimeFromTime(zone: Timezone; time: Time): ZonedTime {...}{.raises: [], tags: [].}
- Returns the ZonedTime for some point in time. Source Edit
proc zonedTimeFromAdjTime(zone: Timezone; adjTime: Time): ZonedTime {...}{.raises: [], tags: [].}
-
Returns the ZonedTime for some local time.
Note that the Time argument does not represent a point in time, it represent a local time! E.g if adjTime is fromUnix(0), it should be interpreted as 1970-01-01T00:00:00 in the zone timezone, not in UTC.
Source Edit proc `$`(zone: Timezone): string {...}{.raises: [], tags: [].}
- Returns the name of the timezone. Source Edit
proc `==`(zone1, zone2: Timezone): bool {...}{.raises: [], tags: [].}
-
Two Timezone's are considered equal if their name is equal.
Examples:
doAssert local() == local() doAssert local() != utc()
Source Edit proc inZone(time: Time; zone: Timezone): DateTime {...}{.tags: [], raises: [], gcsafe, locks: 0.}
- Convert time into a DateTime using zone as the timezone. Source Edit
proc inZone(dt: DateTime; zone: Timezone): DateTime {...}{.tags: [], raises: [], gcsafe, locks: 0.}
- Returns a DateTime representing the same point in time as dt but using zone as the timezone. Source Edit
proc utc(): Timezone {...}{.raises: [], tags: [].}
-
Get the Timezone implementation for the UTC timezone.
Examples:
doAssert now().utc.timezone == utc() doAssert utc().name == "Etc/UTC"
Source Edit proc local(): Timezone {...}{.raises: [], tags: [].}
-
Get the Timezone implementation for the local timezone.
Examples:
doAssert now().timezone == local() doAssert local().name == "LOCAL"
Source Edit proc utc(dt: DateTime): DateTime {...}{.raises: [], tags: [].}
- Shorthand for dt.inZone(utc()). Source Edit
proc local(dt: DateTime): DateTime {...}{.raises: [], tags: [].}
- Shorthand for dt.inZone(local()). Source Edit
proc utc(t: Time): DateTime {...}{.raises: [], tags: [].}
- Shorthand for t.inZone(utc()). Source Edit
proc local(t: Time): DateTime {...}{.raises: [], tags: [].}
- Shorthand for t.inZone(local()). Source Edit
proc getTime(): Time {...}{.tags: [TimeEffect], gcsafe, locks: 0, raises: [].}
- Gets the current time as a Time with nanosecond resolution. Source Edit
proc now(): DateTime {...}{.tags: [TimeEffect], gcsafe, locks: 0, raises: [].}
-
Get the current time as a DateTime in the local timezone.
Shorthand for getTime().local.
Source Edit proc initTimeInterval(nanoseconds, microseconds, milliseconds, seconds, minutes, hours, days, weeks, months, years: int = 0): TimeInterval {...}{. raises: [], tags: [].}
-
Creates a new TimeInterval.
You can also use the convenience procedures called milliseconds, seconds, minutes, hours, days, months, and years.
Examples:
let day = initTimeInterval(hours = 24) let dt = initDateTime(1, mJan, 2000, 12, 0, 0, utc()) doAssert $(dt + day) == "2000-01-02T12:00:00Z"
Source Edit proc `+`(ti1, ti2: TimeInterval): TimeInterval {...}{.raises: [], tags: [].}
- Adds two TimeInterval objects together. Source Edit
proc `-`(ti: TimeInterval): TimeInterval {...}{.raises: [], tags: [].}
-
Reverses a time interval
Examples:
let day = -initTimeInterval(hours = 24) doAssert day.hours == -24
Source Edit proc `-`(ti1, ti2: TimeInterval): TimeInterval {...}{.raises: [], tags: [].}
-
Subtracts TimeInterval ti1 from ti2.
Time components are subtracted one-by-one, see output:
Examples:
let ti1 = initTimeInterval(hours = 24) let ti2 = initTimeInterval(hours = 4) doAssert (ti1 - ti2) == initTimeInterval(hours = 20)
Source Edit proc getDateStr(): string {...}{.gcsafe, extern: "nt$1", tags: [TimeEffect], raises: [].}
- Gets the current date as a string of the format YYYY-MM-DD. Source Edit
proc getClockStr(): string {...}{.gcsafe, extern: "nt$1", tags: [TimeEffect], raises: [].}
- Gets the current clock time as a string of the format HH:MM:SS. Source Edit
proc toParts(ti: TimeInterval): TimeIntervalParts {...}{.raises: [], tags: [].}
-
Converts a TimeInterval into an array consisting of its time units, starting with nanoseconds and ending with years
This procedure is useful for converting TimeInterval values to strings. E.g. then you need to implement custom interval printing
Examples:
var tp = toParts(initTimeInterval(years = 1, nanoseconds = 123)) doAssert tp[Years] == 1 doAssert tp[Nanoseconds] == 123
Source Edit proc `$`(ti: TimeInterval): string {...}{.raises: [], tags: [].}
-
Get string representation of TimeInterval
Examples:
doAssert $initTimeInterval(years = 1, nanoseconds = 123) == "1 year and 123 nanoseconds" doAssert $initTimeInterval() == "0 nanoseconds"
Source Edit proc nanoseconds(nanos: int): TimeInterval {...}{.inline, raises: [], tags: [].}
- TimeInterval of nanos nanoseconds. Source Edit
proc microseconds(micros: int): TimeInterval {...}{.inline, raises: [], tags: [].}
- TimeInterval of micros microseconds. Source Edit
proc milliseconds(ms: int): TimeInterval {...}{.inline, raises: [], tags: [].}
- TimeInterval of ms milliseconds. Source Edit
proc seconds(s: int): TimeInterval {...}{.inline, raises: [], tags: [].}
-
TimeInterval of s seconds.
echo getTime() + 5.second
Source Edit proc minutes(m: int): TimeInterval {...}{.inline, raises: [], tags: [].}
-
TimeInterval of m minutes.
echo getTime() + 5.minutes
Source Edit proc hours(h: int): TimeInterval {...}{.inline, raises: [], tags: [].}
-
TimeInterval of h hours.
echo getTime() + 2.hours
Source Edit proc days(d: int): TimeInterval {...}{.inline, raises: [], tags: [].}
-
TimeInterval of d days.
echo getTime() + 2.days
Source Edit proc weeks(w: int): TimeInterval {...}{.inline, raises: [], tags: [].}
-
TimeInterval of w weeks.
echo getTime() + 2.weeks
Source Edit proc months(m: int): TimeInterval {...}{.inline, raises: [], tags: [].}
-
TimeInterval of m months.
echo getTime() + 2.months
Source Edit proc years(y: int): TimeInterval {...}{.inline, raises: [], tags: [].}
-
TimeInterval of y years.
echo getTime() + 2.years
Source Edit proc initDateTime(monthday: MonthdayRange; month: Month; year: int; hour: HourRange; minute: MinuteRange; second: SecondRange; nanosecond: NanosecondRange; zone: Timezone = local()): DateTime {...}{. raises: [], tags: [].}
-
Create a new DateTime in the specified timezone.
Examples:
let dt1 = initDateTime(30, mMar, 2017, 0, 0, 0, 0, utc()) doAssert $dt1 == "2017-03-30T00:00:00Z"
Source Edit proc initDateTime(monthday: MonthdayRange; month: Month; year: int; hour: HourRange; minute: MinuteRange; second: SecondRange; zone: Timezone = local()): DateTime {...}{. raises: [], tags: [].}
-
Create a new DateTime in the specified timezone.
Examples:
let dt1 = initDateTime(30, mMar, 2017, 0, 0, 0, utc()) doAssert $dt1 == "2017-03-30T00:00:00Z"
Source Edit proc `+`(dt: DateTime; interval: TimeInterval): DateTime {...}{.raises: [], tags: [].}
-
Adds interval to dt. Components from interval are added in the order of their size, i.e first the years component, then the months component and so on. The returned DateTime will have the same timezone as the input.
Note that when adding months, monthday overflow is allowed. This means that if the resulting month doesn't have enough days it, the month will be incremented and the monthday will be set to the number of days overflowed. So adding one month to 31 October will result in 31 November, which will overflow and result in 1 December.
Examples:
let dt = initDateTime(30, mMar, 2017, 0, 0, 0, utc()) doAssert $(dt + 1.months) == "2017-04-30T00:00:00Z" doAssert $(dt - 1.months) == "2017-03-02T00:00:00Z"
Source Edit proc `-`(dt: DateTime; interval: TimeInterval): DateTime {...}{.raises: [], tags: [].}
-
Subtract interval from dt. Components from interval are subtracted in the order of their size, i.e first the years component, then the months component and so on. The returned DateTime will have the same timezone as the input.
Examples:
let dt = initDateTime(30, mMar, 2017, 0, 0, 0, utc()) doAssert $(dt - 5.days) == "2017-03-25T00:00:00Z"
Source Edit proc `+`(dt: DateTime; dur: Duration): DateTime {...}{.raises: [], tags: [].}
-
Examples:
let dt = initDateTime(30, mMar, 2017, 0, 0, 0, utc()) let dur = initDuration(hours = 5) doAssert $(dt + dur) == "2017-03-30T05:00:00Z"
Source Edit proc `-`(dt: DateTime; dur: Duration): DateTime {...}{.raises: [], tags: [].}
-
Examples:
let dt = initDateTime(30, mMar, 2017, 0, 0, 0, utc()) let dur = initDuration(days = 5) doAssert $(dt - dur) == "2017-03-25T00:00:00Z"
Source Edit proc `-`(dt1, dt2: DateTime): Duration {...}{.raises: [], tags: [].}
-
Compute the duration between dt1 and dt2.
Examples:
let dt1 = initDateTime(30, mMar, 2017, 0, 0, 0, utc()) let dt2 = initDateTime(25, mMar, 2017, 0, 0, 0, utc()) doAssert dt1 - dt2 == initDuration(days = 5)
Source Edit proc `<`(a, b: DateTime): bool {...}{.raises: [], tags: [].}
- Returns true iff a < b, that is iff a happened before b. Source Edit
proc `<=`(a, b: DateTime): bool {...}{.raises: [], tags: [].}
- Returns true iff a <= b. Source Edit
proc `==`(a, b: DateTime): bool {...}{.raises: [], tags: [].}
- Returns true if a == b, that is if both dates represent the same point in time. Source Edit
proc between(startDt, endDt: DateTime): TimeInterval {...}{.raises: [], tags: [].}
-
Evaluate difference between two dates in TimeInterval format, so, it will be relative.
Warning: It's not recommended to use between for DateTime's in different TimeZone's. a + between(a, b) == b is only guaranteed when a and b are in UTC.
Examples:
var a = initDateTime(year = 2018, month = Month(3), monthday = 25, hour = 0, minute = 59, second = 59, nanosecond = 1, zone = utc()).local var b = initDateTime(year = 2018, month = Month(3), monthday = 25, hour = 1, minute = 1, second = 1, nanosecond = 0, zone = utc()).local doAssert between(a, b) == initTimeInterval(nanoseconds = 999, milliseconds = 999, microseconds = 999, seconds = 1, minutes = 1) a = parse("2018-01-09T00:00:00+00:00", "yyyy-MM-dd\'T\'HH:mm:sszzz", utc()) b = parse("2018-01-10T23:00:00-02:00", "yyyy-MM-dd\'T\'HH:mm:sszzz") doAssert between(a, b) == initTimeInterval(hours = 1, days = 2) ## Though, here correct answer should be 1 day 25 hours (cause this day in ## this tz is actually 26 hours). That's why operating different TZ is ## discouraged
Source Edit proc `+`(time: Time; interval: TimeInterval): Time {...}{.raises: [], tags: [].}
-
Adds interval to time. If interval contains any years, months, weeks or days the operation is performed in the local timezone.
Examples:
let tm = fromUnix(0) doAssert tm + 5.seconds == fromUnix(5)
Source Edit proc `-`(time: Time; interval: TimeInterval): Time {...}{.raises: [], tags: [].}
-
Subtracts interval from Time time. If interval contains any years, months, weeks or days the operation is performed in the local timezone.
Examples:
let tm = fromUnix(5) doAssert tm - 5.seconds == fromUnix(0)
Source Edit proc `+=`[T, U: TimesMutableTypes](a: var T; b: U)
-
Modify a in place by adding b.
Examples:
var tm = fromUnix(0) tm += initDuration(seconds = 1) doAssert tm == fromUnix(1)
Source Edit proc `-=`[T, U: TimesMutableTypes](a: var T; b: U)
-
Modify a in place by subtracting b.
Examples:
var tm = fromUnix(5) tm -= initDuration(seconds = 5) doAssert tm == fromUnix(0)
Source Edit proc `*=`[T: TimesMutableTypes; U](a: var T; b: U)
-
Examples:
var dur = initDuration(seconds = 1) dur *= 5 doAssert dur == initDuration(seconds = 5)
Source Edit proc `$`(f: TimeFormat): string {...}{.raises: [], tags: [].}
-
Returns the format string that was used to construct f.
Examples:
let f = initTimeFormat("yyyy-MM-dd") doAssert $f == "yyyy-MM-dd"
Source Edit proc initTimeFormat(format: string): TimeFormat {...}{.raises: [ValueError], tags: [].}
-
Construct a new time format for parsing & formatting time types.
See Parsing and formatting dates for documentation of the format argument.
Examples:
let f = initTimeFormat("yyyy-MM-dd") doAssert "2000-01-01" == "2000-01-01".parse(f).format(f)
Source Edit proc format(dt: DateTime; f: TimeFormat): string {...}{.raises: [], tags: [].}
-
Format dt using the format specified by f.
Examples:
let f = initTimeFormat("yyyy-MM-dd") let dt = initDateTime(1, mJan, 2000, 0, 0, 0, utc()) doAssert "2000-01-01" == dt.format(f)
Source Edit proc format(dt: DateTime; f: string): string {...}{.raises: [ValueError], tags: [].}
-
Shorthand for constructing a TimeFormat and using it to format dt.
See Parsing and formatting dates for documentation of the format argument.
Examples:
let dt = initDateTime(1, mJan, 2000, 0, 0, 0, utc()) doAssert "2000-01-01" == format(dt, "yyyy-MM-dd")
Source Edit proc format(dt: DateTime; f: static[string]): string {...}{.raises: [].}
- Overload that validates format at compile time. Source Edit
proc format(time: Time; f: string; zone: Timezone = local()): string {...}{.tags: [], raises: [ValueError].}
-
Shorthand for constructing a TimeFormat and using it to format time. Will use the timezone specified by zone.
See Parsing and formatting dates for documentation of the f argument.
Examples:
var dt = initDateTime(1, mJan, 1970, 0, 0, 0, utc()) var tm = dt.toTime() doAssert format(tm, "yyyy-MM-dd\'T\'HH:mm:ss", utc()) == "1970-01-01T00:00:00"
Source Edit proc format(time: Time; f: static[string]; zone: Timezone = local()): string {...}{.tags: [].}
- Overload that validates f at compile time. Source Edit
proc parse(input: string; f: TimeFormat; zone: Timezone = local()): DateTime {...}{. raises: [ValueError, OverflowError, UnpackError], tags: [TimeEffect].}
-
Parses input as a DateTime using the format specified by f. If no UTC offset was parsed, then input is assumed to be specified in the zone timezone. If a UTC offset was parsed, the result will be converted to the zone timezone.
Examples:
let f = initTimeFormat("yyyy-MM-dd") let dt = initDateTime(1, mJan, 2000, 0, 0, 0, utc()) doAssert dt == "2000-01-01".parse(f, utc())
Source Edit proc parse(input, f: string; tz: Timezone = local()): DateTime {...}{. raises: [ValueError, OverflowError, UnpackError], tags: [TimeEffect].}
-
Shorthand for constructing a TimeFormat and using it to parse input as a DateTime.
See Parsing and formatting dates for documentation of the f argument.
Examples:
let dt = initDateTime(1, mJan, 2000, 0, 0, 0, utc()) doAssert dt == parse("2000-01-01", "yyyy-MM-dd", utc())
Source Edit proc parse(input: string; f: static[string]; zone: Timezone = local()): DateTime
- Overload that validates f at compile time. Source Edit
proc parseTime(input, f: string; zone: Timezone): Time {...}{. raises: [ValueError, OverflowError, UnpackError], tags: [TimeEffect].}
-
Shorthand for constructing a TimeFormat and using it to parse input as a DateTime, then converting it a Time.
See Parsing and formatting dates for documentation of the format argument.
Examples:
let tStr = "1970-01-01T00:00:00+00:00" doAssert parseTime(tStr, "yyyy-MM-dd\'T\'HH:mm:sszzz", utc()) == fromUnix(0)
Source Edit proc parseTime(input: string; f: static[string]; zone: Timezone): Time
- Overload that validates format at compile time. Source Edit
proc `$`(dt: DateTime): string {...}{.tags: [], raises: [], gcsafe, locks: 0.}
-
Converts a DateTime object to a string representation. It uses the format yyyy-MM-dd'T'HH-mm-sszzz.
Examples:
let dt = initDateTime(1, mJan, 2000, 12, 0, 0, utc()) doAssert $dt == "2000-01-01T12:00:00Z"
Source Edit proc `$`(time: Time): string {...}{.tags: [], raises: [], gcsafe, locks: 0.}
-
converts a Time value to a string representation. It will use the local time zone and use the format yyyy-MM-dd'T'HH-mm-sszzz.
Examples:
let dt = initDateTime(1, mJan, 1970, 0, 0, 0, local()) let tm = dt.toTime() doAssert $tm == "1970-01-01T00:00:00" & format(dt, "zzz")
Source Edit proc countLeapYears(yearSpan: int): int {...}{.raises: [], tags: [].}
-
Returns the number of leap years spanned by a given number of years.
Note: For leap years, start date is assumed to be 1 AD. counts the number of leap years up to January 1st of a given year. Keep in mind that if specified year is a leap year, the leap day has not happened before January 1st of that year.
Source Edit proc countDays(yearSpan: int): int {...}{.raises: [], tags: [].}
- Returns the number of days spanned by a given number of years. Source Edit
proc countYears(daySpan: int): int {...}{.raises: [], tags: [].}
- Returns the number of years spanned by a given number of days. Source Edit
proc countYearsAndDays(daySpan: int): tuple[years: int, days: int] {...}{.raises: [], tags: [].}
- Returns the number of years spanned by a given number of days and the remainder as days. Source Edit
proc toTimeInterval(time: Time): TimeInterval {...}{.raises: [], tags: [].}
-
Converts a Time to a TimeInterval.
To be used when diffing times. Consider using between instead.
Examples:
let a = fromUnix(10) let b = fromUnix(1500000000) let ti = b.toTimeInterval() - a.toTimeInterval() doAssert a + ti == b
Source Edit proc cpuTime(): float {...}{.gcsafe, extern: "nt$1", tags: [TimeEffect], raises: [].}
-
gets time spent that the CPU spent to run the current process in seconds. This may be more useful for benchmarking than epochTime. However, it may measure the real time instead (depending on the OS). The value of the result has no meaning. To generate useful timing values, take the difference between the results of two cpuTime calls:
Examples:
var t0 = cpuTime() var fib = @[0, 1, 1] for i in 1 .. 10: fib.add(fib[^1] + fib[^2]) echo "CPU time [s] ", cpuTime() - t0 echo "Fib is [s] ", fib
Source Edit proc epochTime(): float {...}{.gcsafe, extern: "nt$1", tags: [TimeEffect], raises: [].}
-
gets time after the UNIX epoch (1970) in seconds. It is a float because sub-second resolution is likely to be supported (depending on the hardware/OS).
getTime should generally be prefered over this proc.
Source Edit proc unixTimeToWinTime(time: CTime): int64 {...}{.deprecated: "Use toWinTime instead", raises: [], tags: [].}
-
Converts a UNIX Time (time_t) to a Windows file time
Deprecated: use toWinTime instead.
Source Edit proc winTimeToUnixTime(time: int64): CTime {...}{.deprecated: "Use fromWinTime instead", raises: [], tags: [].}
-
Converts a Windows time to a UNIX Time (time_t)
Deprecated: use fromWinTime instead.
Source Edit proc initInterval(seconds, minutes, hours, days, months, years: int = 0): TimeInterval {...}{. deprecated, raises: [], tags: [].}
- Deprecated since v0.18.0: use initTimeInterval instead. Source Edit
proc fromSeconds(since1970: float): Time {...}{.tags: [], raises: [], gcsafe, locks: 0, deprecated.}
-
Takes a float which contains the number of seconds since the unix epoch and returns a time object.
Deprecated since v0.18.0: use fromUnix instead
Source Edit proc fromSeconds(since1970: int64): Time {...}{.tags: [], raises: [], gcsafe, locks: 0, deprecated.}
-
Takes an int which contains the number of seconds since the unix epoch and returns a time object.
Deprecated since v0.18.0: use fromUnix instead
Source Edit proc toSeconds(time: Time): float {...}{.tags: [], raises: [], gcsafe, locks: 0, deprecated.}
-
Returns the time in seconds since the unix epoch.
Deprecated since v0.18.0: use toUnix instead
Source Edit proc getLocalTime(time: Time): DateTime {...}{.tags: [], raises: [], gcsafe, locks: 0, deprecated.}
-
Converts the calendar time time to broken-time representation, expressed relative to the user's specified time zone.
Deprecated since v0.18.0: use local instead
Source Edit proc getGMTime(time: Time): DateTime {...}{.tags: [], raises: [], gcsafe, locks: 0, deprecated.}
-
Converts the calendar time time to broken-down time representation, expressed in Coordinated Universal Time (UTC).
Deprecated since v0.18.0: use utc instead
Source Edit proc getTimezone(): int {...}{.tags: [TimeEffect], raises: [], gcsafe, locks: 0, deprecated.}
-
Returns the offset of the local (non-DST) timezone in seconds west of UTC.
Deprecated since v0.18.0: use now().utcOffset to get the current utc offset (including DST).
Source Edit proc timeInfoToTime(dt: DateTime): Time {...}{.tags: [], gcsafe, locks: 0, deprecated, raises: [].}
-
Converts a broken-down time structure to calendar time representation.
Deprecated since v0.14.0: use toTime instead.
Source Edit proc getStartMilsecs(): int {...}{.deprecated, tags: [TimeEffect], gcsafe, locks: 0, raises: [].}
-
get the milliseconds from the start of the program.
Deprecated since v0.8.10: use epochTime or cpuTime instead.
Source Edit proc timeToTimeInterval(t: Time): TimeInterval {...}{.deprecated, raises: [], tags: [].}
-
Converts a Time to a TimeInterval.
Deprecated since v0.14.0: use toTimeInterval instead.
Source Edit proc getDayOfWeek(day, month, year: int): WeekDay {...}{.tags: [], raises: [], gcsafe, locks: 0, deprecated.}
- Deprecated since v0.18.0: use getDayOfWeek(monthday: MonthdayRange; month: Month; year: int) instead. Source Edit
proc getDayOfWeekJulian(day, month, year: int): WeekDay {...}{.deprecated, raises: [], tags: [].}
- Returns the day of the week enum from day, month and year, according to the Julian calendar. Deprecated since v0.18.0 Source Edit
proc adjTime(zt: ZonedTime): Time {...}{.deprecated: "Use zt.time instead", raises: [], tags: [].}
- Deprecated since v0.19.0: use the time field instead. Source Edit
proc adjTime=(zt: var ZonedTime; adjTime: Time) {...}{.deprecated: "Use zt.time instead", raises: [], tags: [].}
- Deprecated since v0.19.0: use the time field instead. Source Edit
proc zoneInfoFromUtc(zone: Timezone; time: Time): ZonedTime {...}{. deprecated: "Use zonedTimeFromTime instead", raises: [], tags: [].}
- Deprecated since v0.19.0: use zonedTimeFromTime instead. Source Edit
proc zoneInfoFromTz(zone: Timezone; adjTime: Time): ZonedTime {...}{. deprecated: "Use zonedTimeFromAdjTime instead", raises: [], tags: [].}
- Deprecated since v0.19.0: use the zonedTimeFromAdjTime instead. Source Edit