// Copyright (C) 2007 Davis E. King (davis@dlib.net) // License: Boost Software License See LICENSE.txt for the full license. #undef DLIB_SVm_ABSTRACT_ #ifdef DLIB_SVm_ABSTRACT_ #include <cmath> #include <limits> #include <sstream> #include "../matrix/matrix_abstract.h" #include "../algs.h" #include "../serialize.h" #include "function_abstract.h" #include "kernel_abstract.h" #include "svm_nu_trainer_abstract.h" namespace dlib { // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename T, typename U > bool is_learning_problem ( const T& x, const U& x_labels ); /*! requires - T == a matrix or something convertible to a matrix via vector_to_matrix() - U == a matrix or something convertible to a matrix via vector_to_matrix() ensures - returns true if all of the following are true and false otherwise: - is_col_vector(x) == true - is_col_vector(x_labels) == true - x.size() == x_labels.size() - x.size() > 0 !*/ template < typename T, typename U > bool is_binary_classification_problem ( const T& x, const U& x_labels ); /*! requires - T == a matrix or something convertible to a matrix via vector_to_matrix() - U == a matrix or something convertible to a matrix via vector_to_matrix() ensures - returns true if all of the following are true and false otherwise: - is_learning_problem(x, x_labels) == true - x.size() > 1 - there exists at least one sample from both the +1 and -1 classes. (i.e. all samples can't have the same label) - for all valid i: - x_labels(i) == -1 or +1 !*/ // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename trainer_type, typename sample_type, typename scalar_type, typename alloc_type1, typename alloc_type2 > const probabilistic_function<typename trainer_type::trained_function_type> train_probabilistic_decision_function ( const trainer_type& trainer, const std::vector<sample_type,alloc_type1>& x, const std::vector<scalar_type,alloc_type2>& y, const long folds ); /*! requires - 1 < folds <= x.size() - is_binary_classification_problem(x,y) == true - trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer) ensures - trains a classifier given the training samples in x and labels in y. - returns a probabilistic_decision_function that represents the trained classifier. - The parameters of the probability model are estimated by performing k-fold cross validation. - The number of folds used is given by the folds argument. throws - any exceptions thrown by trainer.train() - std::bad_alloc !*/ // ---------------------------------------------------------------------------------------- template < typename trainer_type > trainer_adapter_probabilistic<trainer_type> probabilistic ( const trainer_type& trainer, const long folds ); /*! requires - 1 < folds <= x.size() - trainer_type == some kind of batch trainer object (e.g. svm_nu_trainer) ensures - returns a trainer adapter TA such that calling TA.train(samples, labels) returns the same object as calling train_probabilistic_decision_function(trainer,samples,labels,folds). !*/ // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- // Miscellaneous functions // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename trainer_type, typename in_sample_vector_type, typename in_scalar_vector_type > const matrix<typename trainer_type::scalar_type, 1, 2, typename trainer_type::mem_manager_type> cross_validate_trainer ( const trainer_type& trainer, const in_sample_vector_type& x, const in_scalar_vector_type& y, const long folds ); /*! requires - is_binary_classification_problem(x,y) == true - 1 < folds <= x.nr() - trainer_type == some kind of binary classification trainer object (e.g. svm_nu_trainer) ensures - performs k-fold cross validation by using the given trainer to solve the given binary classification problem for the given number of folds. Each fold is tested using the output of the trainer and the average classification accuracy from all folds is returned. - The average accuracy is computed by running test_binary_decision_function() on each fold and its output is averaged and returned. - The number of folds used is given by the folds argument. throws - any exceptions thrown by trainer.train() - std::bad_alloc !*/ // ---------------------------------------------------------------------------------------- template < typename dec_funct_type, typename in_sample_vector_type, typename in_scalar_vector_type > const matrix<typename dec_funct_type::scalar_type, 1, 2, typename dec_funct_type::mem_manager_type> test_binary_decision_function ( const dec_funct_type& dec_funct, const in_sample_vector_type& x_test, const in_scalar_vector_type& y_test ); /*! requires - is_binary_classification_problem(x_test,y_test) == true - dec_funct_type == some kind of decision function object (e.g. decision_function) ensures - Tests the given decision function by calling it on the x_test and y_test samples. The output of dec_funct is interpreted as a prediction for the +1 class if its output is >= 0 and as a prediction for the -1 class otherwise. - The test accuracy is returned in a row vector, let us call it R. Both quantities in R are numbers between 0 and 1 which represent the fraction of examples correctly classified. R(0) is the fraction of +1 examples correctly classified and R(1) is the fraction of -1 examples correctly classified. throws - std::bad_alloc !*/ // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- template < typename T, typename U > void randomize_samples ( T& samples, U& labels ); /*! requires - T == a matrix object or an object compatible with std::vector that contains a swappable type. - U == a matrix object or an object compatible with std::vector that contains a swappable type. - if samples or labels are matrix objects then is_vector(samples) == true and is_vector(labels) == true - samples.size() == labels.size() ensures - randomizes the order of the samples and labels but preserves the pairing between each sample and its label - A default initialized random number generator is used to perform the randomizing. Note that this means that each call this this function does the same thing. That is, the random number generator always uses the same seed. - for all valid i: - let r == the random index samples(i) was moved to. then: - #labels(r) == labels(i) !*/ // ---------------------------------------------------------------------------------------- template < typename T, typename U, typename rand_type > void randomize_samples ( T& samples, U& labels, rand_type& rnd ); /*! requires - T == a matrix object or an object compatible with std::vector that contains a swappable type. - U == a matrix object or an object compatible with std::vector that contains a swappable type. - if samples or labels are matrix objects then is_vector(samples) == true and is_vector(labels) == true - samples.size() == labels.size() - rand_type == a type that implements the dlib/rand/rand_kernel_abstract.h interface ensures - randomizes the order of the samples and labels but preserves the pairing between each sample and its label - the given rnd random number generator object is used to do the randomizing - for all valid i: - let r == the random index samples(i) was moved to. then: - #labels(r) == labels(i) !*/ // ---------------------------------------------------------------------------------------- template < typename T > void randomize_samples ( T& samples ); /*! requires - T == a matrix object or an object compatible with std::vector that contains a swappable type. - if samples is a matrix then is_vector(samples) == true ensures - randomizes the order of the elements inside samples - A default initialized random number generator is used to perform the randomizing. Note that this means that each call this this function does the same thing. That is, the random number generator always uses the same seed. !*/ // ---------------------------------------------------------------------------------------- template < typename T, typename rand_type > void randomize_samples ( T& samples, rand_type& rnd ); /*! requires - T == a matrix object or an object compatible with std::vector that contains a swappable type. - if samples is a matrix then is_vector(samples) == true ensures - randomizes the order of the elements inside samples - the given rnd random number generator object is used to do the randomizing !*/ // ---------------------------------------------------------------------------------------- // ---------------------------------------------------------------------------------------- } #endif // DLIB_SVm_ABSTRACT_