SHOGUN  v1.1.0
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines
Public Member Functions
CSquaredLoss Class Reference

Detailed Description

CSquaredLoss implements the squared loss function.

Definition at line 26 of file SquaredLoss.h.

Inheritance diagram for CSquaredLoss:
Inheritance graph
[legend]

List of all members.

Public Member Functions

 CSquaredLoss ()
 ~CSquaredLoss ()
virtual float64_t loss (float64_t prediction, float64_t label)
virtual float64_t first_derivative (float64_t prediction, float64_t label)
virtual float64_t second_derivative (float64_t prediction, float64_t label)
virtual float64_t get_update (float64_t prediction, float64_t label, float64_t eta_t, float64_t norm)
virtual float64_t get_square_grad (float64_t prediction, float64_t label)
virtual ELossType get_loss_type ()
virtual const char * get_name () const

Constructor & Destructor Documentation

Constructor

Definition at line 32 of file SquaredLoss.h.

Destructor

Definition at line 37 of file SquaredLoss.h.


Member Function Documentation

float64_t first_derivative ( float64_t  prediction,
float64_t  label 
) [virtual]

Get square of the gradient of the loss function

Parameters:
predictionprediction
labellabel
Returns:
square of gradient

Implements CLossFunction.

Definition at line 28 of file SquaredLoss.cpp.

virtual ELossType get_loss_type ( ) [virtual]

Return loss type

Returns:
L_SQUAREDLOSS

Implements CLossFunction.

Definition at line 96 of file SquaredLoss.h.

virtual const char* get_name ( ) const [virtual]

Return the name of the object

Returns:
LossFunction

Reimplemented from CLossFunction.

Definition at line 98 of file SquaredLoss.h.

float64_t get_square_grad ( float64_t  prediction,
float64_t  label 
) [virtual]

Get square of gradient, used for adaptive learning

Parameters:
predictionprediction
labellabel
Returns:
square of gradient

Implements CLossFunction.

Definition at line 51 of file SquaredLoss.cpp.

float64_t get_update ( float64_t  prediction,
float64_t  label,
float64_t  eta_t,
float64_t  norm 
) [virtual]

Get importance aware weight update for this loss function

Parameters:
predictionprediction
labellabel
eta_tlearning rate at update number t
normscale value
Returns:
update

Implements CLossFunction.

Definition at line 38 of file SquaredLoss.cpp.

float64_t loss ( float64_t  prediction,
float64_t  label 
) [virtual]

Get loss for an example

Parameters:
predictionprediction
labellabel
Returns:
loss

Implements CLossFunction.

Definition at line 21 of file SquaredLoss.cpp.

float64_t second_derivative ( float64_t  prediction,
float64_t  label 
) [virtual]

Get second derivative of the loss function

Parameters:
predictionprediction
labellabel
Returns:
second derivative

Implements CLossFunction.

Definition at line 33 of file SquaredLoss.cpp.


The documentation for this class was generated from the following files:
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines

SHOGUN Machine Learning Toolbox - Documentation