Robust Linear Models

In [1]:
%matplotlib inline

from __future__ import print_function
import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
from statsmodels.sandbox.regression.predstd import wls_prediction_std
/build/statsmodels-rCzyDX/statsmodels-0.8.0/.pybuild/cpython3_3.7_statsmodels/build/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
  from pandas.core import datetools

Estimation

Load data:

In [2]:
data = sm.datasets.stackloss.load()
data.exog = sm.add_constant(data.exog)
/build/statsmodels-rCzyDX/statsmodels-0.8.0/.pybuild/cpython3_3.7_statsmodels/build/statsmodels/datasets/utils.py:100: FutureWarning: arrays to stack must be passed as a "sequence" type such as list or tuple. Support for non-sequence iterables such as generators is deprecated as of NumPy 1.16 and will raise an error in the future.
  exog = np.column_stack(data[field] for field in exog_name)

Huber's T norm with the (default) median absolute deviation scaling

In [3]:
huber_t = sm.RLM(data.endog, data.exog, M=sm.robust.norms.HuberT())
hub_results = huber_t.fit()
print(hub_results.params)
print(hub_results.bse)
print(hub_results.summary(yname='y',
            xname=['var_%d' % i for i in range(len(hub_results.params))]))
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.79189854 0.11100521 0.30293016 0.12864961]
                    Robust linear Model Regression Results                    
==============================================================================
Dep. Variable:                      y   No. Observations:                   21
Model:                            RLM   Df Residuals:                       17
Method:                          IRLS   Df Model:                            3
Norm:                          HuberT                                         
Scale Est.:                       mad                                         
Cov Type:                          H1                                         
Date:                Fri, 16 Aug 2019                                         
Time:                        03:56:32                                         
No. Iterations:                    19                                         
==============================================================================
                 coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
var_0        -41.0265      9.792     -4.190      0.000     -60.218     -21.835
var_1          0.8294      0.111      7.472      0.000       0.612       1.047
var_2          0.9261      0.303      3.057      0.002       0.332       1.520
var_3         -0.1278      0.129     -0.994      0.320      -0.380       0.124
==============================================================================

If the model instance has been used for another fit with different fit
parameters, then the fit options might not be the correct ones anymore .

Huber's T norm with 'H2' covariance matrix

In [4]:
hub_results2 = huber_t.fit(cov="H2")
print(hub_results2.params)
print(hub_results2.bse)
[-41.02649835   0.82938433   0.92606597  -0.12784672]
[9.08950419 0.11945975 0.32235497 0.11796313]

Andrew's Wave norm with Huber's Proposal 2 scaling and 'H3' covariance matrix

In [5]:
andrew_mod = sm.RLM(data.endog, data.exog, M=sm.robust.norms.AndrewWave())
andrew_results = andrew_mod.fit(scale_est=sm.robust.scale.HuberScale(), cov="H3")
print('Parameters: ', andrew_results.params)
Parameters:  [-40.8817957    0.79276138   1.04857556  -0.13360865]

See help(sm.RLM.fit) for more options and module sm.robust.scale for scale options

Comparing OLS and RLM

Artificial data with outliers:

In [6]:
nsample = 50
x1 = np.linspace(0, 20, nsample)
X = np.column_stack((x1, (x1-5)**2))
X = sm.add_constant(X)
sig = 0.3   # smaller error variance makes OLS<->RLM contrast bigger
beta = [5, 0.5, -0.0]
y_true2 = np.dot(X, beta)
y2 = y_true2 + sig*1. * np.random.normal(size=nsample)
y2[[39,41,43,45,48]] -= 5   # add some outliers (10% of nsample)

Example 1: quadratic function with linear truth

Note that the quadratic term in OLS regression will capture outlier effects.

In [7]:
res = sm.OLS(y2, X).fit()
print(res.params)
print(res.bse)
print(res.predict())
[ 5.17010241  0.49797896 -0.01135695]
[0.44331517 0.06844188 0.00605605]
[ 4.88617868  5.13389825  5.37783376  5.61798519  5.85435255  6.08693583
  6.31573504  6.54075018  6.76198125  6.97942824  7.19309116  7.40297
  7.60906478  7.81137548  8.0099021   8.20464466  8.39560314  8.58277754
  8.76616788  8.94577414  9.12159633  9.29363444  9.46188849  9.62635846
  9.78704435  9.94394617 10.09706392 10.2463976  10.39194721 10.53371274
 10.67169419 10.80589158 10.93630489 11.06293413 11.18577929 11.30484039
 11.42011741 11.53161035 11.63931922 11.74324402 11.84338475 11.93974141
 12.03231399 12.12110249 12.20610693 12.28732729 12.36476358 12.43841579
 12.50828394 12.57436801]

Estimate RLM:

In [8]:
resrlm = sm.RLM(y2, X).fit()
print(resrlm.params)
print(resrlm.bse)
[ 5.14198256e+00  4.72095098e-01 -6.43060154e-05]
[0.12510502 0.01931453 0.00170904]

Draw a plot to compare OLS estimates to the robust estimates:

In [9]:
fig = plt.figure(figsize=(12,8))
ax = fig.add_subplot(111)
ax.plot(x1, y2, 'o',label="data")
ax.plot(x1, y_true2, 'b-', label="True")
prstd, iv_l, iv_u = wls_prediction_std(res)
ax.plot(x1, res.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm.fittedvalues, 'g.-', label="RLM")
ax.legend(loc="best")
Out[9]:
<matplotlib.legend.Legend at 0x7f3401452810>

Example 2: linear function with linear truth

Fit a new OLS model using only the linear term and the constant:

In [10]:
X2 = X[:,[0,1]] 
res2 = sm.OLS(y2, X2).fit()
print(res2.params)
print(res2.bse)
[5.627857   0.38440947]
[0.37963927 0.03271125]

Estimate RLM:

In [11]:
resrlm2 = sm.RLM(y2, X2).fit()
print(resrlm2.params)
print(resrlm2.bse)
[5.14402314 0.47157262]
[0.10232394 0.00881664]

Draw a plot to compare OLS estimates to the robust estimates:

In [12]:
prstd, iv_l, iv_u = wls_prediction_std(res2)

fig, ax = plt.subplots(figsize=(8,6))
ax.plot(x1, y2, 'o', label="data")
ax.plot(x1, y_true2, 'b-', label="True")
ax.plot(x1, res2.fittedvalues, 'r-', label="OLS")
ax.plot(x1, iv_u, 'r--')
ax.plot(x1, iv_l, 'r--')
ax.plot(x1, resrlm2.fittedvalues, 'g.-', label="RLM")
legend = ax.legend(loc="best")