
PyTrilinos: High-Performance Distributed-Memory

Solvers for Python

Marzio Sala

ETH Zurich

and

W. F. Spotz and M. A. Heroux

Sandia National Laboratories

PyTrilinos is a collection of Python modules that are useful for serial and parallel scientific com-
puting. This collection contains modules that cover serial and parallel dense linear algebra, serial
and parallel sparse linear algebra, direct and iterative linear solution techniques, domain decompo-

sition and multilevel preconditioners, nonlinear solvers and continuation algorithms. Also included
are a variety of related utility functions and classes, including distributed I/O, coloring algorithms
and matrix generation. PyTrilinos vector objects are integrated with the popular NumPy Python
module, gathering together a variety of high-level distributed computing operations with serial

vector operations.
PyTrilinos is a set of interfaces to existing, compiled libraries. This hybrid framework uses

Python as front-end, and efficient pre-compiled libraries for all computationally expensive tasks.

Thus, we take advantage of both the flexibility and ease of use of Python, and the efficiency of
the underlying C++, C and FORTRAN numerical kernels. The presented numerical results show
that, for many important problem classes, the overhead required by the Python interpreter is
negligible.

To run in parallel, PyTrilinos simply requires a standard Python interpreter. The fundamental
MPI calls are encapsulated under an abstract layer that manages all inter-processor communica-
tions. This makes serial and parallel scripts using PyTrilinos virtually identical.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Parallel Programming;

D.2.2 [Software Engineering]: Design Tools and Techniques–Object-oriented design meth-
ods; D.2.13 [Software Engineering]: Reusable Software–Reusable libraries; G.1.4 [Numerical

Analysis]: General–Iterative methods; G.1.3 [Numerical Analysis]: Numerical Linear Algebra–

Sparse, structured, and very large systems (direct and iterative methods); G.1.8 [Numerical

Analysis]: Numerical Linear Algebra–Multigrid and multilevel methods; G.4 [Mathematical

Software]: Algorithm design and analysis

Additional Key Words and Phrases: Object-oriented programming, script languages, direct solvers,
multilevel preconditioners, nonlinear solvers.

Authors’ address: PO Box 5800 MS 0370, Albuquerque, NM 87185-0370, U.S.A.
ASCI program and the DOE Office of Science MICS program at Sandia National Laboratory.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Com-
pany, for the United States Department of Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2000 ACM 1529-3785/2000/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000, Pages 1–0??.

2 · M. Sala and W. F. Spotz and M. A. Heroux

1. INTRODUCTION

The choice of programming language for the development of large-scale, high-
performance numerical algorithms is often a thorny issue. Ideally, the program-
ming language is only a tool used to produce a working library or application.
In practice, there are important differences between the several programming lan-
guages made available to developers—from FORTRAN77 or FORTRAN90, to C
and C++, Java, Python, MATLAB, and several others. One important distinc-
tion can be made between interpreted languages and compiled languages. For the
former, the list of instructions (called a script) is translated at run-time by an inter-
preter, then executed; for the latter, the code is compiled and an executable file is
created. It is well known that interpreted code tends to be easier to use and debug,
since the interpreter will analyze each instruction as it is executed, providing the
developer and user easy visibility into the program functionality. However, this
flexibility comes at a computational price, since the interpreter may require many
CPU cycles (independent of the problem size) to parse each instruction.

Interpreted languages are thus often disregarded by developers of high-performance
applications or are used only in the concept phase of application development. Al-
most all high-performance libraries are written in compiled languages such as C,
C++ or FORTRAN. Since these languages are reasonably well standardized and
compilers quite mature on almost all platforms, developers can obtain highly ef-
ficient and portable codes. The downside is that constant attention to low-level
system programming, like memory allocation and deallocation, is usually required.
Because compilation and linking are essential steps, the development cycle can be
slowed down considerably, sometimes making the development of new algorithms
problematic.

As developers of numerical algorithms, our interest is in a high-level, flexible pro-
gramming environment, with performance comparable to that of native C, C++
or FORTRAN code. Flexibility is fundamental for rapid prototyping, in the sense
that the developer should be able to write a basic code satisfying his or her needs
in a very short time. However, it is difficult for a single programming language to
simultaneously support ease-of-use, rapid development, and optimized executables.
Indeed, the goals of efficiency and flexibility often conflict. The key observation
to approaching this problem is that the time-critical portion of code requiring a
compiled language is typically a small set of self-contained functions or classes.
Therefore, one can adopt an interpreted (and possibly interactive) language, with-
out a big performance degradation, provided there is a robust interface between
the interpreted and compiled code. Among the available scripting languages, we
decided to adopt Python (see, for instance, [van Rossum 2003]). Python is an
interpreted, interactive, object-oriented programming language, which combines
remarkable power with very clean syntax (it is often observed that well-written
Python code reads like pseudo code). Perhaps most importantly, it can be easily
extended by using a variety of open source tools such as SWIG [Beazley 2003], f2py
or pyfort to create wrappers to modules written in C, C++ or FORTRAN for all
performance critical tasks.

This article describes a collection of numerical linear algebra and solver libraries,
called PyTrilinos, built on top of the Trilinos project [Heroux 2005; Heroux et al.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 3

2004]. It adds significant power to the interactive Python session by providing high-
level commands and classes for the creation and use of serial and distributed, dense
and sparse linear algebra objects. Using PyTrilinos, an interactive Python session
becomes a powerful data-processing and system-prototyping environment that can
be used to test, validate, use and extend serial and parallel numerical algorithms. In
our opinion, Python naturally complements languages like C, C++ and FORTRAN
as opposed to competing with them. Similarly, PyTrilinos complements Trilinos by
adding interactive and rapid development capabilities.

This article is organized as follows. Section 2 describes the project design, the
organization of PyTrilinos and its division into modules. Comments on the usage
of parallel MPI Python scripts using PyTrilinos are reported in Section 3. An
overview of how to use PyTrilinos is given in Section 4. Section 5 is a compari-
son of PyTrilinos to similar Python projects. Section 6 compares PyTrilinos with
MATLAB, and Section 7 compares PyTrilinos with Trilinos. Performance consid-
erations are addressed in Section 8. A discussion of the advantages and limitations
of PyTrilinos is provided in Section 9, and conclusions are given in Section 10.

2. PROJECT DESIGN

2.1 Why Python and SWIG

Python has emerged as an excellent choice for scientific computing because of its
simple syntax, ease of use, object-oriented support and elegant multi-dimensional
array arithmetic. Its interpreted evaluation allows it to serve as both the devel-
opment language and the command line environment in which to explore data.
Python also excels as a “glue” language between a large and diverse collection of
software packages—a common need in the scientific arena.

The Simple Wrapper and Interface Generator (SWIG) [Beazley 2003] is a utility
that facilitates access to C and C++ code from Python and other scripting lan-
guages. SWIG will automatically generate complete Python interfaces for existing
C and C++ code. It also supports multiple inheritance and flexible extensions of
the generated Python interfaces. Using these features, we can construct Python
classes that derive from two or more disjoint classes and we can provide custom
methods in the Python interface that were not part of the original C++ interface.

Python combines broad capabilities with very clean syntax. It has modules,
namespaces, classes, exceptions, high-level dynamic data types, automatic mem-
ory management that frees the user from most hassles of memory allocation, and
much more. Python also has some features that make it possible to write large pro-
grams, even though it lacks most forms of compile-time checking: a program can be
constructed out of modules, each of which defines its own namespace. Exception
handling makes it possible to catch errors where required without cluttering the
code with error checking.

Python’s development cycle is typically much shorter than that of traditional
tools. In Python, there are no compile or link steps—Python programs simply
import modules at runtime and use the objects they contain. Because of this,
Python programs run immediately after changes are made. Python integration
tools make it usable in hybrid, multi-component applications. As a consequence,
systems can simultaneously utilize the strengths of Python for rapid development,

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

4 · M. Sala and W. F. Spotz and M. A. Heroux

and of traditional languages such as C for efficient execution. This flexibility is
crucial in realistic development environments.

2.2 Other Approaches

Python and SWIG offer one way to obtain a hybrid environment that combines an
interpreted language for high-level development and libraries for low-level compu-
tation with good performance. Two other approaches are:

—MATLAB: An obvious alternative is MATLAB [MathWorks 2005]. MATLAB
provides an intuitive linear algebra interface that uses state-of-the-art libraries
to perform compute-intensive operations such as matrix multiplication and fac-
torizations. MATLAB is the lingua franca of numerical algorithm developers
and is used almost universally for algorithm prototyping when problem sizes
are small, and can in many cases also be a production computing environment.
However, MATLAB is often not sufficient for high-end applications because of
its limited parallel computing support. Many parallel MATLAB projects exist,
but they tend to focus on medium-sized and course-grain parallelism. For exam-
ple, arguably the most popular parallel MATLAB project pMATLAB [Kepner
2005], uses file input/output to communicate between parallel MATLAB pro-
cesses. MATLAB does support interaction with other languages. It can be used
from an application and can use external code. But these capabilities are limited
compared to the capabilities of Python and SWIG. Trilinos does provide some
MATLAB interoperability through the Trilinos Epetra Extensions package, sup-
porting the insertion and extraction of Epetra matrices and vector to and from a
MATLAB environment, and the execution of MATLAB instructions from a C++
program, but this is no substitute for a full-featured interactive environment.

—SIDL/Babel: The Scientific Interface Definition Language (SIDL) supports a
generic object-oriented interface specification that can then be processed by Ba-
bel [Team 2005] to generate (i) stubs for wrapping an existing library, written in
one of many supported languages such as Fortran77, Fortran90, C and C++ and,
(ii) multiple language interfaces so that the wrapped libraries can be called from
any application, regardless of what language the application uses. SIDL/Babel is
integral to the development of Common Component Architecture (CCA) [Forum
2005] and is an attractive solution for libraries that need to support multiple
language interfaces. Presently, for the Trilinos project the majority of users who
want compiled library support are C and C++ programmers, so using native
Trilinos interfaces, which are written in C++ and C, is straight-forward. Given
this fact, SIDL/Babel is less attractive because it requires an additional inter-
face specification which must be manually synchronized with the native Trilinos
C++ interfaces. This is labor-intensive and prone to human error. By com-
parison, SWIG directly includes or imports C/C++ headers, which requires no
manual synchronization.

2.3 Multilevel Organization of PyTrilinos

PyTrilinos is designed as a modular multilevel framework, and it takes advantage
of several programming languages at different levels. The key components are:

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 5

TAUCSMPI BLAS LAPACK

KLUDSCPACK ParMETIS METISSuperLU SuperLU_DIST ParaSails

SPARSKITUMFPACK

TriutilsEpetra EpetraExt MLAztecOOAmesos IFPACK

PyTrilinos

NOX LOCA

ScaLAPACK MUMPS

Fig. 1. Organization of the most important PyTrilinos modules. Not represented in the picture
are the interaction among Trilinos modules and with NumPy.

(1) Trilinos, a set of numerical solver packages in active development at Sandia
National Laboratories that provides high-performance scalable linear algebra
objects for large systems of equations. Trilinos contains more than half a million
lines of code, and it can interface with many third-party libraries. The source
code of the current Trilinos public release accounts for about 300,000 code
lines, divided among approximately 67,000 code lines for distributed linear
algebra objects and utilities, 20,000 code lines for direct solvers and interfaces to
third-party direct solvers, 128,000 code lines for multilevel preconditioners, and
76,000 code lines for other algebraic preconditioners and Krylov accelerators.

(2) NumPy, a well-established Python module to handle multi-dimensional arrays
including vectors and matrices [Oliphant 2006]. A large number of scientific
packages and tools have been written in or wrapped for Python that utilize
NumPy for representing fundamental linear algebra objects. By integrating
with NumPy, PyTrilinos is compatible with this sizeable collection of packages.

(3) SWIG, the Simplified Wrapper and Interface Generator, which is a prepro-
cessor that turns ANSI C/C++ declarations into scripting language interfaces,
and produces a fully working Python extension module; see [Beazley 2003].

(4) Distutils, a Python module with utilities aimed at the portable distribution
of both pure Python modules and compiled extension modules. Distutils has
been a part of the standard Python distribution since Python version 2.2.

A description of the organization of the PyTrilinos modules, with some of the
third-party libraries that can be accessed, is shown in Figure 1.

2.4 PyTrilinos Organization

PyTrilinos reflects the Trilinos organization by presenting a series of modules, each
of which wraps a given Trilinos package, where a package is an integral unit usually
developed by a small team of experts in a particular area. Trilinos packages that
support namespaces have a Python submodule for each namespace. Algorithmic

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

6 · M. Sala and W. F. Spotz and M. A. Heroux

capabilities are defined within independent packages; packages can easily interop-
erate since generic adaptors are available (in the form of pure virtual classes) to
define distributed vectors and matrices. At present, the modules of PyTrilinos are:

(1) Epetra, a collection of concrete classes to support the construction and use of
vectors, sparse distributed graphs, and distributed sparse or dense matrices. It
provides serial, parallel and distributed memory linear algebra objects. Epetra
supports double-precision floating point data only (no single-precision or com-
plex), and uses BLAS and LAPACK where possible, and as a result has good
performance characteristics. See [Heroux 2002] for more details.

(2) EpetraExt offers a variety of extension capabilities to the Epetra package, such
as input/output and coloring algorithms. The I/O capabilities make it possible
to read and write generic Epetra objects (like maps, matrices and vectors) or
import and export data from and to other formats, such as ASCII, MATLAB,
XML or the binary and parallel HDF5 format [Sala et al. 2006; Cheng and Folk
2000].

(3) Teuchos provides a suite of utilities commonly needed by Trilinos developers.
Many of these utilities are irrelevant to Python programmers, such as reference-
counted pointers (provided by Python “under the covers”) or command-line
argument parsing (provided by built-in Python modules). The primary excep-
tion to this is the ParameterList class, used by several Trilinos packages as a
way of setting and retrieving arbitrarily-typed parameters, such as convergence
tolerances (double precision), maximum iterations (integer) or preconditioner
names (string). The Teuchos Python modules allows ParameterLists to be built
directly, as well as support for seamless conversion between ParameterLists and
Python dictionaries.

(4) Triutils and Galeri [Sala 2006] allow the creation of several matrices, like the
MATLAB’s gallery function, and it can be useful for examples and testing.
Some input capabilities make it possible to read a matrix in Harwell/Boeing
or Matrix Market format, therefore accessing a large variety of well-recognized
test cases for dense and sparse linear algebra.

(5) Amesos contains a set of clear and consistent interfaces to the following third-
party serial and parallel sparse direct solvers: UMFPACK [Davis 2004], PAR-
DISO [Schenk and Gärtner 2004a; 2004b], TAUCS [Rozin and Toledo 2004;
Rotkin and Toledo 2004; Irony et al. 2004], SuperLU and SuperLU DIST [Dem-
mel et al. 2003], DSCPACK [Raghavan 2002], MUMPS [Amestoy et al. 2003],
and ScaLAPACK [Blackford et al. 1997; Blackford et al. 1996]. As such,
PyTrilinos makes it possible to access state-of-the-art direct solver algorithms
developed by groups of specialists, and written in different languages (C, FOR-
TRAN77, FORTRAN90), in both serial and parallel environments. By using
Amesos, more than 350,000 code lines (without considering BLAS, LAPACK,
and ScaLAPACK) can be easily accessed from any code based on Trilinos (and
therefore PyTrilinos). We refer to [Sala 2004a; 2005b] for more details.

(6) AztecOO provides object-oriented access to preconditioned Krylov accelera-
tors, like CG, GMRES and several others [Golub and Loan 1996], based on the
popular Aztec library [Heroux 2004]. One-level domain decomposition precon-

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 7

ditioners based on incomplete factorizations are available.

(7) IFPACK contains object-oriented algebraic preconditioners, compatible with
Epetra and AztecOO. It supports construction and use of parallel distributed
memory preconditioners such as overlapping Schwarz domain decomposition
with several local solvers. IFPACK can take advantage of SPARSKIT [Saad
1990], a widely used software package; see [Sala and Heroux 2005].

(8) ML contains a set of multilevel preconditioners based on aggregation proce-
dures for serial and vector problems compatible with Epetra and AztecOO. ML
can use the METIS [Karypis and Kumar 1998] and ParMETIS [Karypis and
Kumar 1997] libraries to create the aggregates. For a general introduction to
ML and its applications, we refer to the ML Users Guide [Sala et al. 2004].

(9) NOX is a collection of nonlinear solver algorithms. NOX is written at a high
level with low level details such as data storage and residual computations
left to the user. This is facilitated by interface base classes which users can
inherit from and define concrete methods for residual fills, Jacobian matrix
computation, etc. NOX also provides some concrete classes which interface to
Epetra, LAPACK, PETSc and others.

(10) LOCA is the library of continuation algorithms. It is based on NOX and
provides stepping algorithms for one or more nonlinear problem parameters.

(11) New Package is a parallel “Hello World” code whose primary function is to
serve as a template for Trilinos developers for how to establish package interop-
erability and apply standard utilities such as auto-tooling and automatic doc-
umentation to their own packages. For the purposes of PyTrilinos, it provides
an example of how to wrap a Trilinos package to provide a Python interface.

Note that all third-party libraries (except BLAS and LAPACK) are optional and
do not need to be installed to use PyTrilinos (or Trilinos).

All the presented modules depend on Epetra, since Epetra is the “language” of
Trilinos, and offers a convenient set of interfaces to define distributed linear algebra
objects. PyTrilinos cannot be used without the Epetra module, while all the other
modules can be enabled or disabled in the configuration phase of Trilinos.

3. SERIAL AND PARALLEL ENVIRONMENTS

Although testing and development of high-performance algorithms can be done
in serial environments, parallel environments still constitute the most important
field of application for most Trilinos algorithms. However, Python itself does not
provide any parallel support. Because of this, several projects have been developed
independently to fill the gap between Python and MPI. We have analyzed the
following:

—MPI Python (pyMPI) is a framework for developing parallel Python applica-
tions using MPI [Miller 2005];

—PyPAR is a more light-weight wrapper of the MPI library for Python [Nielsen
2005].

—Python BSP supports the more high-level Bulk Synchronous Parallel approach [Hill
et al. 1998]

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

8 · M. Sala and W. F. Spotz and M. A. Heroux

All of these projects allow the use of Python through the interactive prompt,
but additional overhead is introduced. Also, none of these projects define a well-
recognized standard, since they are still under active development.

Our approach is somewhat complementary to the efforts of these projects. We
decided to use a standard, out-of-the-box, Python interpreter, then wrap only the
very basics of MPI: MPI Init(), MPI Finalize(), and MPI COMM WORLD. By
wrapping these three objects, we can define an MPI-based Epetra communicator
(derived from the pure virtual class Epetra Comm class), on which all wrapped
Trilinos packages are already based. This reflects the philosophy of all the consid-
ered Trilinos packages, that have no explicit dependency on MPI communicators,
and accept the pure virtual class Epetra Comm instead. PyTrilinos scripts can
create a specialized communicator using command

>>> comm = Epetra.PyComm()

which returns an Epetra.MpiComm if PyTrilinos was configured with MPI support,
or an Epetra.SerialComm otherwise. By using Epetra.PyComm, PyTrilinos scripts
are virtually identical for both serial and parallel runs, and generally read:

>>> from PyTrilinos import Epetra

>>> comm = Epetra.PyComm()

...

A pictorial representation of how communication is handled in the case of two
processors is given in Figure 2. For single processor runs, both MPI Init() and
MPI Finalize() are automatically called when the Epetra module is loaded and
released, respectively.

The major disadvantage of this approach is that Python cannot be run interac-
tively if more than one processor is used. Although all the most important MPI
calls are available through Epetra.Comm objects (for example, the rank of a process
is returned by method comm.MyPID() and the number of processes involved in the
computation by method comm.NumProc()), not all the functions specified by the
MPI forum are readily available through this object. For example, at the moment
there are no point-to-point communications, or non-blocking functions (though they
could be easily added in the future).

In our opinion, these are only minor drawbacks, and the list of advantages is much
longer. First, since all calls are handled by Epetra, no major overhead occurs, other
than that of parsing a Python instruction. Second, all PyTrilinos modules that
require direct MPI calls can dynamically cast the Epetra.Comm object, retrieve
the MPI communicator object, then use direct C/C++ MPI calls. As such, the
entire set of MPI functions is available to developers with no additional overhead.
Third, a standard Python interpreter is used. Finally, serial and parallel scripts
can be identical, and PyTrilinos scripts can be run in parallel from the shell in the
typical way, e.g.

$ mpirun -np 4 python my-script.py

where my-script.py contains at least the basic instructions required to define an
Epetra.PyComm.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 9

Epetra.MpiComm

MPI functions

Epetra.MpiComm

Distributed

Object
Linear Algebra

Distributed

Object
Linear Algebra

MPI functions

Processor 0 Processor 1

Fig. 2. All distributed PyTrilinos objects are constructed with the Epetra.MpiComm object,

which takes care of calling MPI functions for inter-processor communications.

One should note that, in addition to Epetra.PyComm which is defined differ-
ently depending on whether MPI support is enabled, Epetra.SerialComm and Epe-
tra.MpiComm will always produce serial and MPI implementations of the Epe-
tra.Comm base class, respectively. Thus, nesting of serial communicators within
an MPI application is possible.

4. USING PYTRILINOS

In order to present the functionalities of PyTrilinos, this section will briefly describe
the main capabilities of all modules, together with a brief mathematical background
of the implemented algorithms. More technical details on the usage of the linear
algebra modules of PyTrilinos can be found in [Sala 2005a].

4.1 The Epetra Module

“Petra” is Greek for “foundation” and the “E” in “Epetra” stands for “essential.”
The Epetra module offers a large variety of objects for linear algebra and par-
allel processing. The most basic objects are communicators, which encapsulates
all the inter-processor data exchange, and maps, which describes the domain de-
composition of distributed linear algebra objects. Serial runs make use of trivial
communicators and maps; parallel runs adopt an MPI-based communicator and
support arbitrary maps.

Several other functionalities are offered by Epetra:

—An extensive set of classes to create and fill distributed sparse matrices. These
classes allow row-by-row or element-by-element constructions. Support is pro-
vided for common matrix operations, including scaling, norm, matrix-vector
multiplication and matrix-multivector multiplication. Compressed row sparse
matrices can be stored row-by-row using class Epetra.CrsMatrix. This class is
derived from the pure abstract class Epetra.RowMatrix, and as such it can be
used with all the linear algebra modules of PyTrilinos.

—Non-local matrix elements can be set using class Epetra.FECrsMatrix.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

10 · M. Sala and W. F. Spotz and M. A. Heroux

—Distributed vectors (whose local component is at the same time a NumPy vector)
can be handled with classes Epetra.Vector and Epetra.MultiVector. Operations
such as norms and AXPY’s are supported.

—Distributed graphs can be created using class Epetra.CrsGraph.

—Serial dense linear algebra is supported (as a light-weight layer on top of BLAS
and LAPACK) through classes Epetra.SerialDenseVector and Epetra.SerialDenseMatrix.

—Several utilities are available, for example Epetra.Time offers portable and con-
sistent access to timing routines.

4.2 The EpetraExt Module

The EpetraExt module offers a variety of extension to the Epetra module, such
as matrix-matrix operations (addition, multiplication and transformation), graph
coloring algorithms and I/O for important Epetra objects. For example, to read a
vector and a matrix stored in Matrix-Market format, one simply has to write:

>>> (ierr, X) = EpetraExt.MatrixMarketFileToMultiVector("x.mm", Map)

>>> (ierr, A) = EpetraExt.MatrixMarketFileToCrsMatrix("A.mm", Map)

EpetraExt defines a powerful tool for exchanging data between C++ codes written
with Trilinos and Python codes written with PyTrilinos. Users can load distributed
Trilinos objects, obtained with production codes and stored in a file using the
EpetraExt package, then use Python to validate the code, perform fine-tuning of
numerical algorithms, or post-processing.

4.3 The Teuchos Module

The Teuchos module provides seamless conversions between Teuchos::ParameterList
objects and Python dictionaries. Typically, the user will not even have to import
the Teuchos module, but rather import some other module (Amesos, AztecOO,
ML, etc.) that uses Teuchos ParameterLists, and the Teuchos module will be im-
ported automatically. Wherever a ParameterList is expected, a Python dictionary
can be provided by the user in its place. The dictionary keys must all be strings,
preferably ones recognized by the parent package, and the corresponding value can
be an int, float, string or dictionary (which is interpreted as a sublist).

Alternatively, the user can import the Teuchos module directly and create and
manipulate ParameterLists using the same methods as the C++ version supports.
These objects are also accepted wherever a ParameterList is expected.

If a Trilinos method returns a ParameterList, the user will actually receive a
PyDictParameterList, a hybrid object that behaves like a Python dictionary and a
ParameterList.

4.4 The Triutils Module

The Triutils module provides:

—Matrix reading capabilities: A function is available to read a matrix from the
popular Harwell/Boeing format.

—Matrix generation capabilities. Several matrices, corresponding to finite differ-
ence discretization of model problems, can be generated using the matrix gallery

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 11

of Triutils, which provides functionalities similar to that of MATLAB’s gallery
command; see [Sala et al. 2004, Chapter 5] for more details.

This module is intended mainly for testing linear solvers.

4.5 The Amesos Module

“Amesos” is Greek for “direct” and the Amesos package provides a consistent in-
terface to a collection of third-party, sparse, direct solvers for the linear system

AX = B (1)

where A ∈ R
n×n is a sparse linear operator, X ∈ R

n×m and B ∈ R
n×m are the

solution and right-hand sides, respectively. Parameter n is the global dimension of
the problem, and m is the number of vectors in the multi-vectors X and B. (If
m = 1, then X and B are “standard” vectors.) Linear systems of type (1) arise in
a variety of applications, and constitute the innermost computational kernel, and
often the most time-consuming of several numerical algorithms. An efficient solver
for Equation (1) is of fundamental importance for most PDE solvers, both linear
and non-linear.

Typically, the most robust strategy to solve (1) is to factor the matrix A into the
product of two matrices L and U , so that A = LU , and the linear systems L and U
are readily solvable. Usually, L and U are a lower and upper triangular matrices and
the process is referred to as LU decomposition. In PyTrilinos, the direct solution of
large linear systems is performed by the Amesos module, which defines a consistent
interface to third-party direct solvers. All Amesos objects are constructed from the
function class Amesos. The main goal of this class is to allow the user to select any
supported direct solver (that has been enabled at configuration time) by simply
changing an input parameter. An example of a script reading the linear system
stored in the Harwell/Boeing format, then solving the problem using SuperLU is
shown in Figure 3. Several parameters, specified using a Teuchos ParameterList
(or equivalently, a Python dictionary), are available to control the selected Amesos
solver. These parameters share the same names used by Trilinos; a list of valid
parameter names can be found in the Amesos manual [Sala 2004a]. Note that just
by changing the value of SolverType, the same script can be used to experiment
with all the solvers supported by Amesos.

4.6 The AztecOO, IFPACK and ML Modules

For a sparse matrix, the major inconveniences of direct solution methods (as pre-
sented in section 4.5) are that the factorization algorithm requires O(nk) opera-
tions, with k typically between 2 and 3, and the L and U factors are typically much
more dense than the original matrix A, making LU decomposition too memory de-
manding for large scale problems. Moreover, the factorization process is inherently
serial, and parallel factorization algorithms have limited scalability. The forward
and backward triangular solves typically exhibit very poor parallel speedup.

The solution to this problem is to adopt an iterative solver, like conjugate gradient
or GMRES [Golub and Loan 1996]. The rationale behind iterative methods is
that they only require (in their simplest form) matrix-vector and vector-vector
operations, and both classes of operations scale well in parallel environments.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

12 · M. Sala and W. F. Spotz and M. A. Heroux

from PyTrilinos import Amesos, Triutils, Epetra

Comm = Epetra.PyComm()

Map, Matrix, LHS, RHS, Exact = Triutils.ReadHB("fidap035.rua", Comm)

Problem = Epetra.LinearProblem(Matrix, LHS, RHS);

Factory = Amesos.Factory()

SolverType = "SuperLU"

Solver = Factory.Create(SolverType, Problem)

AmesosList = {"PrintTiming" : True,

"PrintStatus" : True }

Solver.SetParameters(AmesosList)

Solver.SymbolicFactorization()

Solver.NumericFactorization()

Solver.Solve()

LHS.Update(-1.0, Exact, 1.0)

ierr, norm = LHS.Norm2()

print ’||x_computed - x_exact||_2 = ’, norm

Fig. 3. Complete script that solves a linear system using Amesos/SuperLU.

Unfortunately, the convergence of iterative methods is determined by the spectral
properties of the matrix A—typically, its condition number κ(A). For real-life
problems κ(A) is often “large”, meaning that the iterative solution method will
converge slowly. To solve this problem, the original linear system is replaced by

AP−1PX = B

where P , called a preconditioner, is an operator whose inverse should be closely
related to the inverse of A, though much cheaper to compute. P is chosen so that
AP−1 is easier to solver than A (that is, it is better conditioned), in terms of both
iterations to converge and CPU time.

Often, algebraic preconditioners are adopted, that is, P is constructed by ma-
nipulating the entries of A. This gives rise to the so-called incomplete factorization
preconditioners (ILU) or algebraic multilevel methods.

Because ILU preconditioners do not scale well on parallel computers, a common
practice is to perform local ILU factorizations. In this situation, each processor
computes a factorization of a subset of matrix rows and columns independently
from all other processors. This is an example of one-level overlapping domain
decomposition (DD) preconditioners. The basic idea of DD methods consists in
dividing the computational domain into a set of sub-domains, which may or may
not overlap. We will focus on overlapping DD methods only, because they can
be re-interpreted as algebraic manipulation of the assembled matrix, thus allowing
the construction of black-box preconditioners. Overlapping DD methods are often
referred to as overlapping Schwarz methods. DD preconditioners can be written as

P−1 =
M
∑

i=1

RT
i B

−1
i Ri, (2)

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 13

from PyTrilinos import IFPACK, AztecOO, Triutils, Epetra

Comm = Epetra.PyComm()

Map, Matrix, LHS, RHS, Exact = Triutils.ReadHB("fidap035.rua", Comm)

IFPACK.PrintSparsity(Matrix, "matrix.ps")

Solver = AztecOO.AztecOO(Matrix, LHS, RHS)

Solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_cg)

Solver.SetAztecOption(AztecOO.AZ_precond, AztecOO.AZ_dom_decomp)

Solver.SetAztecOption(AztecOO.AZ_subdomain_solve, AztecOO.AZ_ilu)

Solver.SetAztecOption(AztecOO.AZ_graph_fill, 1)

Solver.Iterate(1550, 1e-5)

Fig. 4. Complete example of usage of AztecOO.

Epetra::CrsMatrix

Fig. 5. Plot of sparsity pattern of a matrix obtained using IFPACK.PrintSparsity().

where M represents the number of sub-domains, Ri is a rectangular Boolean matrix
that restricts a global vector to the subspace defined by the interior of the i-th sub-
domain, and B−1

i approximates the inverse of

Ai = RiAR
T
i , (3)

for example, being its ILU factorization.

The Python script in Figure 4 adopts a CG solver, with 1550 maximum iterations
and a tolerance of 10−5 on the relative residual. The script creates a preconditioner
defined by (2), using AztecOO’s factorizations to solve the local problems. The
sparsity pattern of a matrix is visualized with the instruction PrintSparsity() of
the IFPACK module; an example of output is shown in Figure 5. IFPACK can also
be used to define other flavors of domain decomposition preconditioners.

Another class of preconditioners is multilevel methods. For certain combina-
tions of iterative methods and linear systems, the error at each iteration projected
onto the eigenfunctions has components that decay at a rate proportional to the

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

14 · M. Sala and W. F. Spotz and M. A. Heroux

corresponding eigenvalue (or frequency). Multilevel methods exploit this property
[Briggs et al. 2000] by projecting the linear system onto a hierarchy of increasingly
coarsened “meshes” (which can be actual computational grids or algebraic con-
structs) so that each error component rapidly decays on at least one coarse mesh.
The linear system on the coarsest mesh, called the coarse grid problem, is solved
directly. The iterative method is called the smoother, to signify its diminished role
as a way to damp out the high frequency error. The grid transfer (or interpolation)
operators are called restriction and prolongation operators.

Multilevel methods are characterized by the sequence of coarse spaces, the defi-
nition of the operators for each coarse space, the specification of the smoother, and
the restriction and prolongation operators. Geometric multigrid (GMG) methods
are multilevel methods that require the user to specify the underlying grid, and in
most cases a hierarchy of (not necessarily nested) coarsened grids.

Algebraic multigrid (AMG) (see [Briggs et al. 2000, Section 8]) development has
been motivated by the demand for multilevel methods that are easier to use. In
AMG, both the matrix hierarchy and the prolongation operators are constructed
directly from the stiffness matrix. To use Aztec00 or IFPACK, a user must supply
a linear system and select a preconditioning strategy. In AMG, the only additional
information required from the user is to specify a coarsening strategy.

The AMG module of PyTrilinos is ML. Using this module, the user can easily
create black-box two-level and multilevel preconditioners based on smoothed ag-
gregation procedures (see [Sala 2004b; Brezina 1997] and the references therein).
Parameters are specified using a Teuchos ParameterList or a Python dictionary, as
in the Amesos module of Section 4.5; the list of accepted parameter names is given
in [Sala et al. 2004]. Applications using ML preconditioners have been proved to
be scalable up to thousands of processors [Lin et al. 2004; Shadid et al.].

4.7 The NOX and LOCA Modules

The NOX module is intended to solve nonlinear problems of the form

F (x∗) = 0, (4)

where F is a nonlinear system of equations defined for a vector of unknowns x,
whose (possibly non-unique) solution is given by x = x∗. NOX supports a variety
of algorithms for solving (4), all of which utilize a common interface framework
for passing data and parameters between the user’s top-level code and underlying
NOX routines.

This framework takes the form of a base class that the user inherits from and
that supports a given data format, for example NOX::Epetra::Interface or
NOX::Petsc::Interface. The derived class then implements the method computeF

with arguments for input x and the result F . Depending on the algorithm employed,
other methods may be required, and include computeJacobian, computePrecMatrix
and computePreconditioner.

The Python implementation of NOX supports the Epetra interface. Additional
code was added to ensure NOX could call back to Python and that the data would
be passed between NOX and Python correctly. To achieve this, a new interface
named PyInterface was developed:

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 15

from PyTrilinos import NOX

class Problem(NOX.Epetra.PyInterface):

def computeF(self, x, rhs):

...

return True

When NOX needs the function F to be computed, it will send x and rhs, via the
PyInterface class, to computeF as Epetra.Vectors. The method should return

a Boolean indicating whether the computation was successful or not. If required,
the methods computeJacobian, computePrecMatrix and computePreconditioner

may also be provided.
Typically, our derived class can become quite extensive, with a constructor

and set and get methods for physical parameters, mesh information and meta-
information such as graph connectivity. But minimally, all that is required is a
computeF method. NOX needs an Epetra Operator that computes the Jacobian
for the system and provides a way to approximate the Jacobian using a finite dif-
ference formula:

Jij =
∂Fi

∂xj

=
Fi(x+ δej) − Fi(x)

δ
(5)

where J = {Jij} is the Jacobian matrix, δ is a small perturbation, and ej is the
Cartesian unit vector for dimension j. This operator can be constructed as follows:

from PyTrilinos import Epetra

comm = Epetra.PyComm()

map = Epetra.Map(n,0,comm)

iGuess = Epetra.Vector(map)

problem = Problem()

jacOp = NOX.Epetra.FiniteDifference(problem, iGuess)

We note that the FiniteDifferencing operator is extremely inefficient and that
the computation of Jacobians for sparse systems can be sped up considerably by
using the NOX.Epetra.FiniteDifferenceColoring operator instead, along with
the graph coloring algorithms provided in EpetraExt.

NOX provides mechanisms for creating customized status test objects for spec-
ifying stopping criteria, and a solver manager object. See [Kolda and Pawlowski
2004] for details.

The LOCA package is a layer on top of NOX that provides a number of contin-
uation algorithms for stepping through a series of solutions related to one or more
problem parameters. Python support for this package is currently in its develop-
mental stage.

5. COMPARISON BETWEEN PYTRILINOS AND RELATED PYTHON PROJECTS

This Section positions PyTrilinos with respect to the following related Python
projects:

—Numeric. The Python Numeric module adds a fast, compact, multidimensional
array language facility to Python. This package is now officially obsolete, suc-
ceeded by the NumPy package described below.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

16 · M. Sala and W. F. Spotz and M. A. Heroux

—Numarray. Numarray is an incomplete reimplementation of Numeric which
adds the ability to efficiently manipulate large contiguous-data arrays in ways
similar to MATLAB. Numarray is also to be replaced by NumPy.

—NumPy. NumPy derives from the old Numeric code base and can be used as a
replacement for Numeric. It also adds the features introduced by Numarray and
can also be used to replace Numarray. NumPy provides a powerful n-dimensional
array object, basic linear algebra functions, basic Fourier transforms, sophisti-
cated random number capabilities, and tools for integrating FORTRAN code.
Although NumPy is a relatively new package with respect the Numeric and Nu-
marray, it is considered the successor of both packages. Many existing scientific
software packages for Python (plotting packages, for example) accept or expect
NumPy arrays as arguments. To increase the compatibility of PyTrilinos with
this large collection of packages, those classes that represent contiguous arrays of
data,

—Epetra.IntVector

—Epetra.MultiVector

—Epetra.Vector

—Epetra.IntSerialDenseMatrix

—Epetra.IntSerialDenseVector

—Epetra.SerialDenseMatrix

—Epetra.SerialDenseVector

inherit from both the corresponding C++ Epetra class and the NumPy user array.container
class. Thus, these classes are NumPy arrays, and can be treated as such by other
Python modules. Special constructors are provided that ensure that the buffer
pointers for the Epetra object and NumPy array both point to the same block
of data.

—ScientificPython. ScientificPython is a collection of Python modules that are
useful for scientific computing. It supports linear interpolation, 3D vectors and
tensors, automatic derivatives, nonlinear least-square fits, polynomials, elemen-
tary statistics, physical constants and unit conversions, quaternions and other
scientific utilities. Several modules are dedicated to 3D visualization; There are
also interfaces to the netCDF library (portable structured binary files), to MPI
(Message Passing Interface), and to BSPlib (Bulk Synchronous Parallel program-
ming). In our opinion ScientificPython and PyTrilinos are not competitors, since
their numerical algorithms are targeted to different kinds of problems and are
therefore complementary.

—SciPy. SciPy is a much larger project, and provides its own version of some
(but not all) of what ScientificPython does. SciPy can be seen as an attempt
to provide Python wrappers for much of the most popular numerical software
offered by netlib.org. SciPy is strongly tied to the NumPy module, which pro-
vides a common data structure for a variety of high level science and engineering
modules, provided as a single collection of packages. SciPy includes modules for
optimization, integration, special functions, signal and image processing, genetic
algorithms, ODE solvers, and more.
Regarding the serial dense linear algebra modules, both SciPy and PyTrilinos
define interfaces to optimized LAPACK and BLAS routines. However, PyTrilinos

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 17

offers a wide variety of tools to create and use distributed sparse matrices and
vectors not supported by SciPy. In our opinion, the SciPy capabilities to manage
sparse matrices are quite limited. For example, SciPy offers a wrapper for one
sparse serial direct solver, SuperLU, while PyTrilinos can interface with several
serial and parallel direct solvers through the Amesos module. In our experience,
the nonlinear module of SciPy can be used to solve only limited-size problems,
while the algorithms provided by the NOX modules have been used to solve
nonlinear PDE problems with up to hundreds of millions of unknowns.

—PySparse. PySparse [Bröker et al. 2005] can handle symmetric and non-symmetric
serial sparse matrices, and contains a set of iterative methods for solving linear
systems of equations, preconditioners, an interface to a serial direct solver (Su-
perLU), and an eigenvalue solver for the symmetric, generalized matrix eigenvalue
problem. PySparse is probably the first successful public-domain software that
offers efficient sparse matrix capabilities in Python. However, PyTrilinos allows
the user to access a much larger set of well-tested algorithms (including nonlin-
ear solvers) in a more modular way. Also, PySparse cannot be used in a parallel
environments like PyTrilinos.

In our opinion, what PyTrilinos adds to the computational scientist’s Python
toolkit is object-oriented algorithm interfaces, a ground-up design to support spar-
sity and distributed computing, and truly robust linear and nonlinear solvers with
extensive preconditioning support.

6. COMPARISON BETWEEN PYTRILINOS AND MATLAB

Any mathematical software framework which claims ease-of-use cannot avoid a
comparison with MATLAB, the de-facto standard for the development of numer-
ical analysis algorithms and software. Our experience is that, while MATLAB’s
vector syntax and built-in matrix data types greatly simplifies the programming
language, it is not possible to perform all large-scale computing using this lan-
guage. MATLAB’s sparse matrix operations are slow compared with Epetra’s, as
will be shown. Another handicap of MATLAB is the inflexibility of its scripting
language: There may be only one visible function in a file, and the function name
must be the file name itself. This can make it harder to modularize the code.
Other desirable language features, such as exception handling, are also missing in
MATLAB.

We now present some numerical results that compare the CPU time required by
PyTrilinos and MATLAB 7.0 (R14) to create a dense and a sparse matrix. The
first test sets the elements of a serial dense matrix, where each (i, j) element of the
square real matrix A is defined as A(i, j) = 1/(i+ j). The corresponding MATLAB
code reads as follows:

A = zeros(n, n);

for i=1:n

for j=1:n

A(i,j) = 1.0/(i + j);

end

end

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

18 · M. Sala and W. F. Spotz and M. A. Heroux

n MATLAB PyTrilinos

10 0.00001 0.000416

100 0.0025 0.0357
1,000 0.0478 3.857

Table I. CPU time (in seconds) required by MATLAB and PyTrilinos to set the elements of a
dense matrix of size n.

while the PyTrilinos code is:

A = Epetra.SerialDenseMatrix(n, n)

for i in xrange(n):

for j in xrange(n):

A[i,j] = 1.0 / (i + j + 2)

From Table I, it is evident that MATLAB is more efficient than PyTrilinos in the
generation of dense matrices.

The second test creates a sparse diagonal matrix, setting one element at a time.
The MATLAB code reads:

A = spalloc(n, n, n);

for i=1:n

A(i,i) = 1;

end

while the PyTrilinos code contains the instructions:

A = Epetra.CrsMatrix(Epetra.Copy, Map, 1)

for i in xrange(n):

A.InsertGlobalValues(i, [1.0], [i])

A.FillComplete()

Clearly, other techniques exist to create in MATLAB and in PyTrilinos sparse
diagonal matrices. However, the presented example is representative of several real
applications, which often have the need of setting the elements of a matrix one
element (or a few) at a time. Numerical results for this test case are reported
in Table II. Even for mid-sized sparse matrices, PyTrilinos is much faster than
MATLAB’s built-in sparse matrix capabilities. Table III reports the CPU required
for a matrix-vector product. The sparse matrices arise from a 5-pt discretization
of a Laplacian on a 2D Cartesian grid (as produced in MATLAB by the command
gallery(’poisson’, n)). Note that PyTrilinos is up to 50% faster than MATLAB
for this very important computational kernel.

Since PyTrilinos is intended largely for sparse matrices, these results confirm
the achievement of project goals compared to MATLAB, especially because the set
of algorithms available in PyTrilinos to handle and solve sparse linear systems is
superior to that available in MATLAB.

7. COMPARISON BETWEEN PYTRILINOS AND TRILINOS

It is important to position PyTrilinos with respect to Trilinos itself. You can think
of PyTrilinos as a Python interface to the most successful and stable Trilinos al-
gorithms. Hence, not all the algorithms and the tools of Trilinos are (or will) be

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 19

n MATLAB PyTrilinos

10 0.00006 0.000159

1,000 0.00397 0.0059
10,000 0.449 0.060

50,000 11.05 0.313

100,000 50.98 0.603

Table II. CPU time (in seconds) required by MATLAB and PyTrilinos to set the elements of a
sparse diagonal matrix of size n.

n MATLAB PyTrilinos

50 0.02 0.0053
100 0.110 0.0288

500 3.130 1.782

1,000 12.720 7.150

Table III. CPU time (in seconds) required by MATLAB and PyTrilinos to perform 100 matrix-

vector products. The sparse matrices, of size n × n, correspond to a 5-pt discretization of a 2D
Laplacian on a rectangular Cartesian grid.

ported to PyTrilinos, even though there is an on-going effort to wrap all unique
Trilinos functionality under the PyTrilinos package. Although PyTrilinos mimics
Trilinos very closely, there is not a one-to-one map. The most important differences
are:

—Developers need not concern themselves with memory allocation and deallocation
issues when using PyTrilinos.

—No header files are required by PyTrilinos.

—No int* or double* arrays are used by PyTrilinos, replaced instead by NumPy
arrays or python sequences that can be converted to NumPy arrays. Since Python
containers know their length, the need to pass the array size in an argument list
is generally lifted.

—Printing generally follows the Python model of defining a str () method for
returning a string representation of an object. Thus, in Python, print Object

usually yields the same result as Object.Print(std::cout) in C++. One cat-
egory of exceptions to this is the array-like classes such as Epetra.Vector, for
which print vector will yield the NumPy array result (but the Print() method
produces the Epetra output).

Clearly, however, the most important comparison between PyTrilinos and Trilinos
is the analysis of the overhead required by the Python interpreter and interface.
Here, we distinguish between fine-grained and coarse-grained scripts. By a fine-
grained script we mean one that contains simple, basic instructions such as loops,
for which the overhead of parsing can be significant. By a coarse-grained script,
instead, we indicate one that contains a small number of computationally intensive
statements. Sections 7.1 and 7.2 compare two sets of equivalent codes, one based
on Trilinos and the other on PyTrilinos, and report the CPU time required on a
Linux machine to execute the codes.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

20 · M. Sala and W. F. Spotz and M. A. Heroux

7.1 Fine-grained Scripts

In this section we present how to construct a distributed (sparse) matrix, arising
from a finite-difference solution of a one-dimensional Laplace problem. This matrix
looks like:

A =













2 −1
−1 2 −1

.
−1 2 −1

−1 2













.

The Trilinos and PyTrilinos codes are reported in Table IV. The matrix is con-
structed row-by-row, and we specify the values of the matrix entries one row at a
time, using the InsertGlobalValues method. In C++, this method takes (other
than the row ID) a double*, an int* and an int to specify the number of matrix
entries, their values and which columns they occupy. In Python, we use lists in
place of C arrays (in this example named Values and Indices), and no longer
need to specify the number of entries, but rather just ensure that the lists have the
same length. Note the distinction between local and global elements and the use
of the global ID method of the map object, GID(). This is not necessary in a serial
code, but it is the proper logic in parallel. Therefore, the same script can be used
for both serial and parallel runs.

Finally, we transform the matrix representation into one based on local indexes.
The transformation is required in order to perform efficient parallel matrix-vector
products and other matrix operations. This call to FillComplete() will reorganize
the internally stored data so that each process knows the set of internal, border
and external elements for a matrix-vector product of the form B = AX. Also, the
communication pattern is established. As we have specified just one map, Epetra
assumes that the data layout of the rows of A is the same of both vectors X and
B; however, more general distributions are supported as well.

Table V compares the CPU time required on a Pentium M 1.7 GHz Linux machine
to run the two codes for different values of the matrix size. Only one processor has
been used in the computations. Although the PyTrilinos script requires fewer lines
of code, it is slower of a factor of about 10. This is due to several sources of
overhead, including the parsing of each Python instruction and the conversion from
Python’s lists to C++ arrays.

7.2 Coarse-grained Scripts

Section 7.1 showed that the overhead required by Python and the PyTrilinos inter-
faces makes fine-grained PyTrilinos scripts uncompetitive with their Trilinos coun-
terparts. This section, instead, presents how coarse-grained scripts in Python can
be as effective as their compiled Trilinos counterparts. Table VI presents codes to
solve a linear system with a multilevel preconditioner based on aggregation; the ma-
trix arises from a finite difference discretization of a Laplacian on a 3D structured
Cartesian grid.

Numerical results are reported in Table VII. Experiments were conducted under
the same conditions presented in Section 7.1. Note that the CPU time is basically
the same. This is because each python instruction (from the creation of the matrix,

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

H
ig

h
-P

erfo
rm

a
n
ce

S
o
lv

ers
fo

r
P
y
th

o
n

·
2
1

Trilinos Source PyTrilinos Source

#include "mpi.h"

#include "Epetra_MpiComm.h"

#include "Epetra_CrsMatrix.h"

#include "Epetra_Vector.h"

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

Epetra_MpiComm Comm(MPI_COMM_WORLD);

int NumGlobalRows = 1000000;

Epetra_Map Map(NumGlobalRows, 0, Comm);

Epetra_CrsMatrix Matrix(Copy, Map, 0);

int Indices[3];

double Values[3];

int NumEntries;

int NumLocalRows = Map.NumMyElements();

for (int ii = 0 ; ii < NumLocalRows ; ++ii) {

int i = Map.GID(ii);

if (i == 0) {

Indices[0] = i; Indices[1] = i + 1;

Values[0] = 2.0; Values[1] = -1.0;

NumEntries = 2;

} else if (i == NumGlobalRows - 1) {

Indices[0] = i; Indices[1] = i - 1;

Values[0] = 2.0; Values[1] = -1.0;

NumEntries = 2;

} else {

Indices[0] = i; Indices[1] = i - 1; Indices[2] = i + 1;

Values[0] = 2.0; Values[1] = -1.0; Values[2] = -1.0;

NumEntries = 3;

}

Matrix.InsertGlobalValues(i, NumEntries, Values, Indices);

}

Matrix.FillComplete();

MPI_Finalize();

return(EXIT_SUCCESS);

}

from PyTrilinos import Epetra

NumGlobalRows = 1000000

Comm = Epetra.PyComm()

Map = Epetra.Map(NumGlobalRows, 0, Comm)

Matrix = Epetra.CrsMatrix(Epetra.Copy, Map, 0)

NumLocalRows = Map.NumMyElements()

for ii in xrange(NumLocalRows):

i = Map.GID(ii)

if i == 0:

Indices = [i, i + 1]

Values = [2.0, -1.0]

elif i == NumGlobalRows - 1:

Indices = [i, i - 1]

Values = [2.0, -1.0]

else:

Indices = [i, i - 1, i + 1]

Values = [2.0, -1.0, -1.0]

Matrix.InsertGlobalValues(i, Values, Indices)

ierr = Matrix.FillComplete()

Table IV. Code listings for the Epetra test case.

A
C

M
T
ra

n
sa

c
tio

n
s

o
n

C
o
m

p
u
ta

tio
n
a
l
L
o
g
ic

,
V
o
l.

0
,
N

o
.
0
,
0
0

2
0
0
0
.

22 · M. Sala and W. F. Spotz and M. A. Heroux

NumGlobalRows Trilinos PyTrilinos

1,000 0.010 0.15

10,000 0.113 0.241

100,000 0.280 1.238
1,000,000 1.925 11.28

Table V. CPU time (in seconds) on Linux/GCC for the codes reported in Table IV.

Fig. 6. Wall-clock time (in seconds) on 16-node Linux/GCC cluster for the codes reported in
Table VIII. The bars report the time required by Trilinos (scale on the left), while the line reports
the ratio between the time required by PyTrilinos and the time required by Trilinos (scale on the

right).

to the definition of the preconditioner, to the solution of the linear system) is
computationally intensive, and may require several CPU seconds. Under these
assumptions, the overhead required by Python is insignificant. More comments on
this subject can be found in the following Section.

7.3 Parallel Coarse-grained Scripts

Section 7.2 showed that the overhead required by Python and the PyTrilinos inter-
faces makes coarse-grained PyTrilinos scripts very competitive with their Trilinos
counterparts. This section presents how parallel coarse-grained scripts in Python
can also be as effective as their compiled Trilinos counterparts. Table VIII presents
codes to compute ten matrix-vector multiplications on a 2D beam-like Poisson
problem, where the resolution scales with the number of processors so that each
processor has the same size subproblem.

Numerical results are reported in Figure 6. Experiments were conducted on a
16-node Linux/GCC/LAM-MPI cluster where each node has a single AMD Athlon
(Barton 2600) processor and the cluster has a dedicated Fast Ethernet switch for
inter-node communication. The timing results show that there is essentially no dif-
ference in timing results for either version, and that parallel scalability is excellent,
as it should be for this type of problem.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

H
ig

h
-P

erfo
rm

a
n
ce

S
o
lv

ers
fo

r
P
y
th

o
n

·
2
3

Trilinos Source PyTrilinos Source

#include "ml_include.h"

#include "mpi.h"

#include "Epetra_MpiComm.h"

#include "Epetra_Map.h"

#include "Epetra_Vector.h"

#include "Epetra_CrsMatrix.h"

#include "Epetra_LinearProblem.h"

#include "Trilinos_Util_CrsMatrixGallery.h"

#include "AztecOO.h"

#include "ml_MultiLevelPreconditioner.h"

int main(int argc, char *argv[])

{

MPI_Init(&argc,&argv);

Epetra_MpiComm Comm(MPI_COMM_WORLD);

int n = 100 * 100 * 100;

CrsMatrixGallery Gallery("laplace_3d", Comm);

Gallery.Set("problem_size", n);

Epetra_RowMatrix* A = Gallery.GetMatrix();

Epetra_LinearProblem* Problem = Gallery.GetLinearProblem();

AztecOO solver(*Problem);

Teuchos::ParameterList MLList;

MLList.set("output", 10);

MLList.set("max levels",5);

MLList.set("aggregation: type", "Uncoupled");

MLList.set("smoother: type","symmetric Gauss-Seidel");

MLList.set("smoother: pre or post", "both");

MLList.set("coarse: type","Amesos-KLU");

MultiLevelPreconditioner* MLPrec =

new MultiLevelPreconditioner(*A, MLList);

solver.SetPrecOperator(MLPrec);

solver.SetAztecOption(AZ_solver, AZ_cg);

solver.SetAztecOption(AZ_output, 32);

solver.Iterate(500, 1e-5);

delete MLPrec;

MPI_Finalize();

exit(EXIT_SUCCESS);

}

from PyTrilinos import ML, Triutils, AztecOO, Epetra

Comm = Epetra.PyComm()

n = 100 * 100 * 100

Gallery = Triutils.CrsMatrixGallery("laplace_3d", Comm)

Gallery.Set("problem_size", n)

Matrix = Gallery.GetMatrix()

LHS = Gallery.GetStartingSolution()

RHS = Gallery.GetRHS()

MLList = {"max levels" : 5,

"output" : 10,

"smoother: pre or post" : "both",

"smoother: type" : "symmetric Gauss-Seidel",

"aggregation: type" : "Uncoupled",

"coarse: type" : "Amesos-KLU"}

Prec = ML.MultiLevelPreconditioner(Matrix, False)

Prec.SetParameterList(MLList)

Prec.ComputePreconditioner()

Solver = AztecOO.AztecOO(Matrix, LHS, RHS)

Solver.SetPrecOperator(Prec)

Solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_cg)

Solver.SetAztecOption(AztecOO.AZ_output, 32)

Solver.Iterate(500, 1e-5)

Table VI. Code listings for the ML test.

A
C

M
T
ra

n
sa

c
tio

n
s

o
n

C
o
m

p
u
ta

tio
n
a
l
L
o
g
ic

,
V
o
l.

0
,
N

o
.
0
,
0
0

2
0
0
0
.

24 · M. Sala and W. F. Spotz and M. A. Heroux

n Trilinos PyTrilinos

20 0.499 0.597

40 2.24 2.287

60 7.467 7.36
80 17.018 17.365

100 32.13 32.565

Table VII. CPU time (in seconds) on Linux/GCC for the codes reported in Table VI.

8. PERFORMANCE CONSIDERATIONS

The conclusion of the previous section is that fine-grained loops in Python can be
inefficient and should be avoided in the kernels of a scientific code when speed is
an issue. Often, however, there is no coarse-grained command available to do the
same job efficiently. One example of this, that we will explore in this section, is
solver algorithms that use callbacks.

The NOX module implements nonlinear solvers at a relatively high level, and
expects the user to provide functions to compute residual values, Jacobian matrices,
and/or preconditioning matrices, depending on the needs of the algorithm. For
example, when NOX needs a residual computed, it calls a function set by the
user. When NOX is accessed via PyTrilinos in Python, this callback function is
by necessity a Python function, which is typically expected to perform fine-grained
calculations, and so can be an important source of inefficiencies.

Fortunately, there are ways to reduce these inefficiencies, and we will explore two
of them here. Both methods substitute compiled loops for Python loops, although
by two different mechanisms. The first is using array slice syntax, and the second
is using the weave module [Jones 2000], a component of SciPy that can compile
and run embedded C or C++ code within a Python function.

We will demonstrate the advantages of these approaches by way of a case study,
involving the solution of a common nonlinear flow test case, the incompressible
lid-driven cavity problem [Ghia et al. 1982], expressed here in terms of the stream
function and vorticity. The stream function ψ is defined implicitly in terms of the
x− and y− flow velocity components u and v:

u =
∂ψ

∂x
, v = −

∂ψ

∂x
. (6)

The vorticity ζ is defined as the curl of the velocity. In 2D, this is always a vector
perpendicular to the plane of the problem, and so is treated as a scalar. The
relationship between stream function and vorticity is therefore

(

∂2

∂x2
+

∂2

∂y2

)

ψ = −ζ. (7)

The final governing equation can be obtained by taking the curl of the incompress-
ible momentum equation to obtain

[

−
∂2

∂x2
−

∂2

∂y2
+Re

(

u
∂

∂x
+ v

∂

∂y

)]

ζ = 0, (8)

where Re is the Reynolds number. The system is completed by specifying the
boundary conditions. For the driven cavity problem, the domain is the unit square

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

H
ig

h
-P

erfo
rm

a
n
ce

S
o
lv

ers
fo

r
P
y
th

o
n

·
2
5

Trilinos Source PyTrilinos Source

#include "mpi.h"

#include "Epetra_MpiComm.h"

#include "Epetra_Vector.h"

#include "Epetra_Time.h"

#include "Epetra_RowMatrix.h"

#include "Epetra_CrsMatrix.h"

#include "Epetra_Time.h"

#include "Epetra_LinearProblem.h"

#include "Trilinos_Util_CrsMatrixGallery.h"

using namespace Trilinos_Util;

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

Epetra_MpiComm Comm(MPI_COMM_WORLD);

int nx = 1000;

int ny = 1000 * Comm.NumProc();

CrsMatrixGallery Gallery("laplace_2d", Comm);

Gallery.Set("ny", ny);

Gallery.Set("nx", nx);

Gallery.Set("problem_size",nx*ny);

Gallery.Set("map_type", "linear");

Epetra_LinearProblem* Problem = Gallery.GetLinearProblem();

assert (Problem != 0);

// retrieve pointers to solution (lhs), right-hand side (rhs)

// and matrix itself (A)

Epetra_MultiVector* lhs = Problem->GetLHS();

Epetra_MultiVector* rhs = Problem->GetRHS();

Epetra_RowMatrix* A = Problem->GetMatrix();

Epetra_Time Time(Comm);

for (int i = 0 ; i < 10 ; ++i)

A->Multiply(false, *lhs, *rhs);

cout << Time.ElapsedTime() << endl;

MPI_Finalize();

return(EXIT_SUCCESS);

} // end of main()

#! /usr/bin/env python

from PyTrilinos import Epetra, Triutils

Comm = Epetra.PyComm()

nx = 1000

ny = 1000 * Comm.NumProc()

Gallery = Triutils.CrsMatrixGallery("laplace_2d", Comm)

Gallery.Set("nx", nx)

Gallery.Set("ny", ny)

Gallery.Set("problem_size", nx * ny)

Gallery.Set("map_type", "linear")

Matrix = Gallery.GetMatrix()

LHS = Gallery.GetStartingSolution()

RHS = Gallery.GetRHS()

Time = Epetra.Time(Comm)

for i in xrange(10):

Matrix.Multiply(False, LHS, RHS)

print Time.ElapsedTime()

Table VIII. Code listings for the scalable matrix-vector multiplication test, where p is the number of nodes used.

A
C

M
T
ra

n
sa

c
tio

n
s

o
n

C
o
m

p
u
ta

tio
n
a
l
L
o
g
ic

,
V
o
l.

0
,
N

o
.
0
,
0
0

2
0
0
0
.

26 · M. Sala and W. F. Spotz and M. A. Heroux

with the no-slip condition applied to all four walls. That is, on the boundaries,
we impose u = v = 0, except for the top boundary, which slides with a tangential
velocity u = 1.

The fine-grained way to implement a Python function to compute, for example,
equations 6, using central differences on a uniform grid of mesh size h, would be

for i in xrange(1,nx-1):

for j in xrange(1,ny-1):

u[i,j] = (psi[i,j+1] - psi[i,j-1]) / (2*h)

v[i,j] = (psi[i-1,j] - psi[i+1,j]) / (2*h)

A second, and preferable, way to implement these equations would be to use array
slice syntax. This forces the loops to be executed by the underlying compiled code,
and is more efficient:

u[1:-1,1:-1] = (psi[2:,1:-1] - psi[0:-2,1:-1]) / (2*h)

v[1:-1,1:-1] = (psi[1:-1,0:-2] - psi[1:-1,2:]) / (2*h)

This approach is not always possible, especially if the governing equation to be
approximated is particularly complex. A third way to implement such a block of
code would be to use the weave module:

import weave

code = """

for (int i=1; i<nx-1; ++i) {

for (int j=1; j<ny-1; ++j) {

u(i,j) = (psi(i,j+1) - psi(i,j-1)) / (2*h);

v(i,j) = (psi(i-1,j) - psi(i+1,j)) / (2*h);

}

}

"""

weave.inline(code,

[’u’,’v’,’psi’,’nx’,’ny’,’h’],

type_converters = weave.converters.blitz)

It is not our purpose here to describe how the weave module works. However, the
meaning of the code should be clear: a Python string is defined with valid C++
code and this string is passed to the weave module inline function, along with the
names of variables that are to be passed to and from the embedded code, and an
optional specification for how those variables are to be converted.

Table IX describes the process and results of incrementally applying more efficient
computational techniques to a Python script that uses PyTrilinos.NOX to solve
our driven cavity problem on a 21 × 21 grid. Line 1 is the baseline, in which all
the callback functions are written in the fine-grained manner, taking just over 29
seconds to solve. At line 2, we have substituted array slice syntax for computing
the boundary conditions, shaving about 3 seconds off of our total solution time.
Line 3 is the same for BCs computed using weave. Note that in this instance, the
slice syntax is faster, due to the overhead of the conversions, and is the method we
keep in the code.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 27

Equation Method Solution Time Notes

1 All naive 29.12 Baseline

2 BCs slice syntax 26.05

3 BCs weave 28.90 Slice syntax is preferable
4 (7) slice syntax 19.99

5 (7) weave 19.20 Weave is slightly preferable

6 (8) weave 6.99 Slice syntax complicated

7 (6) slice syntax 1.23
8 (6) weave 1.44 Slice syntax is preferable

Table IX. Case study of applying more efficient computational methods to Python callback func-
tions for solving a 21 × 21 Driven Cavity problem.

Lines 4 and 5 refer to solving the stream function equation (7) with slice syntax
and weave, respectively. In this case, weave is slightly faster, and that is the
version we keep, for an additional savings of about 7 seconds. The question of when
weave will produce faster code than slice syntax has been the topic of conference
discussions [Jones and Miller 2002]. The answer depends on the overhead of weave
converting data types versus the amount of work being done, and the creation of
temporary arrays with slice syntax.

For the vorticity equation (8) at line 6, we assume this trend will hold and only
implement the weave approach, which saves an additional 12 seconds. We note
also that equation (8) is more complicated than equation (7) and thus harder to
implement with array slice syntax.

The final two lines of the table, 7 and 8, describe the results for converting the
computational method for the velocities, equation (6). Somewhat surprisingly, the
array slice syntax gives a slightly more efficient result even though this is a “larger”
2D calculation rather than a 1D boundary computation. This is most likely due
to the simplicity of the formulas. In the end, we chose to keep the weave version,
because we could more easily implement nonuniform mesh sizes. Either way, the
savings was over 5.5 seconds, bringing the overall savings to just over 27.5 seconds
and a speedup factor of over 20.

9. DISCUSSION

In this paper we have presented an overview of the PyTrilinos project, an effort to
facilitate the design, integration and ongoing support of Python access to a large
collection of mathematical software libraries. PyTrilinos provides a simple but
powerful rapid development environment, along with the integration tools needed
to apply it in realistic environments. In our opinion, the most significant impact of
PyTrilinos is in the following areas:

—Rapid Prototyping. Because Python is a simple language, coding is much
faster than in other languages. For example, its dynamic typing, built-in con-
tainers, and garbage collection eliminate much of the manual bookkeeping code
typically required in languages like C or C++. As most bookkeeping code is
missing, Python programs are easier to understand and more closely reflect the
actual problem they’re intended to address. Often, well-written Python code
looks like pseudo code, and as such it is easier to write, read, and maintain.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

28 · M. Sala and W. F. Spotz and M. A. Heroux

—Brevity. Python codes can be short and concise. Since things like type decla-
ration, memory management, and common data structure implementations are
absent, Python programs are typically a fraction of their C or C++ equivalents.
Brevity is also promoted by the object-oriented design of both PyTrilinos and
Trilinos itself. Python scripts are short, generally with few jump statements, and
therefore have good software metrics in terms of code coverage.

—Modularity. Python allows the code to be organized in reusable, self-contained
modules. This also reflects the natural structure of Trilinos itself. Since Python
supports both procedural and object-oriented design, users can adopt their pre-
ferred way of writing code.

—Reusability. Because Python is a high-level, object-oriented language, it en-
courages writing reusable software and well-designed systems.

—Explorative Computation. Since Python is an interpreted and interactive
scripting language, the user can undertake computations in an explorative and
dynamic manner. Intermediate results can be examined and taken into account
before the next computational step, without the compile-link-run cycle typical of
C or C++.

—Integration. Python was designed to be a “glue” language and PyTrilinos
relies on the ability to mix components written in different languages. Python
lends itself to experimental, interactive program development, and encourages
developing systems incrementally by testing components in isolation and putting
them together later. By themselves, neither C nor Python is adequate to address
typical development bottlenecks; together, they can do much more. The model
we are using splits the work effort into front-end components that can benefit
from Python’s easy-of-use and back-end modules that require the efficiency of
compiled languages like C, C++, or FORTRAN.

—Software Quality. Software quality is of vital importance in the development
of numerical libraries. If the quality of the software used to produce a new
computation is questionable, then the result must be treated with caution as
well. If, however, the quality of the software is high, it can reliably be made
available to other research groups.

Producing high quality software for state-of-the-art algorithms is a challenging
goal. Therefore, the production of high quality software requires a comprehensive
set of testing programs. A way to do that without influencing the rapid develop-
ment of prototype code, is to write tests in Python. By helping to detect defects,
PyTrilinos can become an important testing tool for Trilinos itself. (Clearly,
PyTrilinos tests require a bug-free interface between Trilinos and PyTrilinos.)
Using PyTrilinos in the Trilinos test harness, one can experiment with the code
to detect and manage dynamic errors, while static errors (like argument checking)
must be detected by other types of testing.

—Stability. The only Python module on which PyTrilinos depends is NumPy,
for both serial and parallel applications. Since NumPy is a well-supported and
stable module, users can develop their applications based on PyTrilinos with no
need to change or update them in the near future. Note also that the NumPy
interfaces of PyTrilinos are all located in the Epetra module, and therefore other

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 29

Python packages like Numeric and Numarray could be easily supported with a
few, localized changes.

—Data Input. All scientific applications require data to be passed into the code.
Typically, this data is read from one or more files and often the input logic
becomes extensive in order to make the code more flexible. In other words,
the scientific code developers often find themselves implementing a rudimentary
scripting language to control their application. We have found that applications
developed in Python avoid this distraction from more scientific work because the
Python scripts themselves become high-level “input files,” complete with variable
definitions, looping capabilities and every other Python feature.

Of course, Python (and by extension PyTrilinos) is not the perfect language or
environment for all problems. The most important problems we have encountered
are:

—Portability. There are two layers of support for portability in PyTrilinos. The
top layer is Trilinos itself, which is based on autotools/autoconf/automake, which
results in a configure script that the user can invoke that generates Makefiles
which should produce working libraries when the user calls make. At the PyTrili-
nos level, the Makefiles associated with python interfaces execute setup.py scripts
that import the distutils module to provide portability.
The top layer of portability is the more restrictive. For example, it is often
necessary to tell configure several details about the compiler in order to get
Trilinos to compile properly or at all. The lower layer of portability is more
stable. For example, Trilinos supports cygwin, but not Windows. If Trilinos were
ever to support Windows, the distutils module ensures that PyTrilinos would
automatically be supported.

—Shared Libraries on Massively Parallel Computers. Another problem is
related to the shared library approach, the easiest way of integrating third-party
libraries in Python. Most massively parallel computers do not support shared
libraries, making Python scripts unusable for very large scale computations.

—Lack of Compile-time Checks. In Python all checks must be performed
at run-time. Although compile-time checks could be added using decorators,
recently introduced in Python 2.4, Python does not support type-checking of
function arguments, so user mistakes related to incorrect variable types can be
a challenge to find and correct, where these types of mistakes would be caught
quickly by a strongly-typed language and compiling system such as C++ and
Java.

—Performance Considerations. By using a Python wrapper, a performance
penalty is introduced due to decoding of Python code, the execution of wrapped
code, and returning the results in a Python-compliant format. These tasks may
require thousands of CPU cycles, therefore it is important to recognize this situ-
ation when it occurs. The performance penalty is small if the C/C++ function
does a lot of work. Therefore, for infrequently called functions, this penalty is
negligible. All performance-critical kernels should be written in C, C++, or For-
tran, and everything else can be in Python, as we have shown for model problems
in Sections 5, 6 and 7.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

30 · M. Sala and W. F. Spotz and M. A. Heroux

—Management of C/C++ Arrays. Although SWIG makes it easy to wrap C
and C++ arrays as Python objects (and vice-versa), this process still requires the
programmer to define wrappers in the interface file that performs the conversion
from the two languages. Without such an explicit wrapper, the proper handling
of arrays can result in non-intuitive code, or memory leaks.

—Limited Templated Code. Many object-oriented C++ numerical libraries,
including Trilinos, are adopting template support, but Python does not support
templates explicitely. Thus, the interface writer has to select a-priori which in-
stances of the templated class will be included. This is somewhat ironic, because
pure Python code can be viewed as “automatically” templated, since rigorous
type checking is not performed and expressions simply require that the specified
operators and methods exist for any given object. However, wrapped code must
be type-checked “under the covers,” to ensure that compiled code is called with
appropriately typed arguments.

10. CONCLUDING REMARKS

To summarize, the most important feature of Python is its powerful but simple pro-
gramming environment designed for development speed and for situations where the
complexity of compiled languages can be a liability. Of course, Python enthusiasts
will point out several other strengths of the language; our aim was to show that
Python can be successfully used to develop and access state-of-the-art numerical
solver algorithms, in both serial and parallel environments.

We believe that PyTrilinos is a unique effort. For the first time a large number of
high-performance algorithms for distributed sparse linear algebra is easily available
from a scripting language. None of the previously reported projects for scientific
computing with Python handles sparse and distributed matrices, or the diversity
of solver algorithms. We hope that PyTrilinos can help to make the development
cycle of high-performance numerical algorithms more efficient and productive.

Acknowledgments

The authors would like to thank all the Trilinos developers for their contributions
to Trilinos, without which PyTrilinos could not exist. We also thank Michael Gee
for comments on an earlier version of the manuscript, and the anonymous referees
for several helpful suggestions.

REFERENCES

Amestoy, P., Duff, I., L’Excellent, J.-Y., and Koster, J. 2003. MUltifrontal Massively
Parallel Solver (MUMPS Versions 4.3.1) Users’ Guide.

Beazley, D. M. 2003. Automated scientific software scripting with SWIG. Future Gener. Com-
put. Syst. 19, 5, 599–609.

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Jemmel, J., Dhillon, I., Dongarra,

J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., and Whaley, R. C.

1997. ScaLAPACK Users’ Guide. SIAM Pub.

Blackford, L. S., Choi, J., Cleary, A., Petitet, A., Whaley, R. C., Demmel, J., Dhillon,

I., Stanley, K., Dongarra, J., Hammarling, S., Henry, G., and Walker, D. 1996. Scala-

pack: a portable linear algebra library for distributed memory computers - design issues and

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

High-Performance Solvers for Python · 31

performance. In Supercomputing ’96: Proceedings of the 1996 ACM/IEEE conference on Su-

percomputing (CDROM). 5.

Brezina, M. 1997. Robust iterative method on unstructured meshes. Ph.D. thesis, University of
Colorado at Denver.

Briggs, W. L., Henson, V. E., and McCormick, S. 2000. A multigrid tutorial, Second Edition.

SIAM, Philadelphia.

Bröker, O., Chinellato, O., and Geus, R. 2005. Using Python for large scale linear algebra
applications. Future Generation Computer Systems 21, 969–979.

Cheng, A. and Folk, M. 2000. HDF5: High performance science data solution for the new

millennium. In SC2000: High Performance Networking and Computing. Dallas, TX. 149.

Davis, T. A. 2004. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software 30, 2, 165–195.

Demmel, J. W., Gilbert, J. R., and Li, X. S. 2003. SuperLU Users’ Guide.

Forum, C. C. A. 2005. Common component architecture (cca). http://www.cca-forum.org.

Ghia, U., Ghia, K. N., and Shin, C. T. 1982. High Re solutions for incompressible flow using
Navier-Stokes equations and a multi-grid method. Journal of Computational Physics 48, 387–
411.

Golub, G. H. and Loan, C. F. V. 1996. Matrix Computations. Johns Hopkins University Press,
Baltimore, Maryland. Third Edition.

Heroux, M. A. 2002. Epetra Reference Manual , 2.0 ed.

Heroux, M. A. 2004. AztecOO user guide. Tech. Rep. SAND2004-3796, Sandia National Labo-

ratories, Albuquerque, CA.

Heroux, M. A. 2005. Trilinos home page. http://software.sandia.gov/trilinos.

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda, T. G.,
Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., Salinger, A. G., Thorn-

quist, H. K., Tuminaro, R. S., Willenbring, J. M., Williams, A., and Stanley, K. S. 2004.
An Overview of the Trilinos Project. ACM Transactions on Mathematical Software.

Hill, J. M. D., McColl, B., Stefanescu, D. C., Goudreau, M. W., Lang, K., Rao, S. B.,

Suel, T., Tsantilas, T., and Bisseling, R. 1998. BSPlib: The BSP programming library.
Parallel Computing 48, 1947-1980.

Irony, D., Shklarski, G., and Toledo, S. 2004. Parallel and fully recursive multifrontal su-
pernodal sparse cholesky. Future Generation Computer Systems 20, 3 (Apr.), 425–440.

Jones, E. 2000. Weave users guide. http://www.scipy.org/documentation/weave.

Jones, E. and Miller, P. J. 2002. Weave — inlining c/c++ in python. In O’Reilly Open Source
Convention.

Karypis, G. and Kumar, V. 1997. ParMETIS: Parallel graph partitioning and sparse matrix
ordering li brary. Tech. Rep. 97-060, Department of Computer Science, University of Minnesota.

Karypis, G. and Kumar, V. 1998. METIS: Unstructured graph partitining and sparse matrix
ordering sy stem. Tech. rep., University of Minnesota, Department of Computer Science.

Kepner, J. 2005. pMATLAB home page. http://www.ll.mit.edu/pMatlab.

Kolda, T. G. and Pawlowski, R. P. 2004. Nox home page. http://software.sandia.gov/nox.

Lin, P., Sala, M., Shadid, J., and Tuminaro, R. 2004. Performance of fully-coupled alge-
braic multilevel domain decomposition preconditioners for incompressible flow and transport.
submitted to International Journal for Numerical Methods in Engineering.

MathWorks, T. 2005. MATLAB home page. http://www.mathworks.com/.

Miller, P. 2005. MPI python. http://sourceforge.net/projects/pympi.

Nielsen, O. 2005. PyPAR – parallel python. http://datamining.anu.edu.au/∼ole/pypar/.

Oliphant, T. E. 2006. Guide to NumPy. Trelgol Publishing.

Raghavan, P. 2002. Domain-separator codes for the parallel solution of sparse linear systems.
Tech. Rep. CSE-02-004, Department of Computer Science and Engineering, The Pennsylvania
State University.

Rotkin, V. and Toledo, S. 2004. The design and implementation of a new out-of-core sparse

Cholesky factorization method. ACM Transactions on Mathematical Software 30, 19–46.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

32 · M. Sala and W. F. Spotz and M. A. Heroux

Rozin, E. and Toledo, S. 2004. Locality of reference in sparse Cholesky methods. To appear in

Electronic Transactions on Numerical Analysis.

Saad, Y. 1990. SPARSKIT: A basic tool kit for sparse matrix computations. Tech. Rep. 90-20,

NASA Ames Research Center, Moffett Field, CA.

Sala, M. 2004a. Amesos 2.0 reference guide. Tech. Rep. SAND-4820, Sandia National Labora-

tories. September.

Sala, M. 2004b. Analysis of two-level domain decomposition preconditioners based on aggrega-
tion. Mathematical Modelling and Numerical Analysis 38, 5, 765–780.

Sala, M. 2005a. Distributed sparse linear algebra with PyTrilinos. Tech. Rep. SAND2005-3835,
Sandia National Laboratories, Albuquerque NM, 87185. June.

Sala, M. 2005b. On the design of interfaces to serial and parallel direct solver libraries. Tech.
Rep. SAND-4239, Sandia National Laboratories. July.

Sala, M. 2006. Galeri home page. http://software.sandia.gov/trilinos/packages/galeri.

Sala, M., Heroux, M., Hoekstra, R., and Williams, A. 2006. Serialization and deserial-
ization tools for distributed linear algebra objects. Tech. rep., Sandia National Laboratories,
Albuquerque, NM.

Sala, M. and Heroux, M. A. 2005. Robust algebraic preconditioners with IFPACK 3.0. Tech.
Rep. SAND-0662, Sandia National Laboratories. February.

Sala, M., Heroux, M. A., and Day, D. 2004. Trilinos Tutorial , 4.0 ed.

Sala, M., Hu, J. J., and Tuminaro, R. S. 2004. ML 3.1 smoothed aggregation user’s guide.
Tech. Rep. SAND-4819, Sandia National Laboratories. September.

Schenk, O. and Gärtner, K. 2004a. On fast factorization pivoting methods for sparse symmetric
indefinite systems. Technical Report, Department of Computer Science, University ofBasel.
Submitted.

Schenk, O. and Gärtner, K. 2004b. Solving unsymmetric sparse systems of linear equations
with PARDISO. Journal of Future Generation Computer Systems 20, 3, 475–487.

Shadid, J., Tuminaro, R., Devine, K., an, G. H., and Lin, P. Performance of fully-coupled do-
main decomposition precondition ers for finite element transport/reaction simulations. Accepted

for publication in Journ Comp Phys.

Team, B. D. 2005. Babel home page. http://www.llnl.gov/CASC/components/overview.html.

van Rossum, G. 2003. The Python Language Reference Manual. Network Theory Ltd.

ACM Transactions on Computational Logic, Vol. 0, No. 0, 00 2000.

