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Abstract

A “manycore revolution” is underway in high performance computing (HPC) to

move from model of interconnected single-core nodes with a single thread of execution

to many-core nodes with many threads execution [5]. This revolution leaves HPC

application programmers with the challenge of maximizing parallel performance at

both the interconnect level (i.e. process parallelism) and the manycore level (i.e. thread

parallelism). The ThreadPool library has been developed within the Trilinos Project

[2] to provide HPC applications with a simple interface to make effective use of thread

parallelism on CPU-based manycore nodes.
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1 Introduction

A “manycore revolution” is underway in high performance computing (HPC) to move from

model of interconnected single-core nodes with a single thread of execution to many-core

nodes with many threads execution [5]. This revolution leaves HPC application program-

mers with the challenge of maximizing parallel performance at both the interconnect level

(i.e. process parallelism) and the manycore level (i.e. thread parallelism). The ThreadPool

library has been developed within the Trilinos Project [11] to provide HPC applications

with a simple interface to make effective use of thread parallelism on CPU-based many-

core nodes.

Parallelism at the interconnect level is being effectively exploited by HPC applications,

with the Message Passing Interface (MPI) [7] as the de-facto programming model. Re-

search is in progress to effectively exploit parallelism at the manycore level. The architec-

ture of the HPC node drives manycore programming models in two directions: homoge-

neous thread parallelism versus heterogeneous thread parallelism. In homonegenous many-

core parallelism all processing cores of a node are equivalent—they have equal capabilities

and access to the node’s resources (e.g., memory, interconnect, disks). In heterogeneous

manycore parallelism the processing cores residing within a node have different compute

capabilities and different means of accessing the node’s resources.

Homogeneous manycore and heterogeneous manycore programming models have fun-

damental differences; however, an HPC application can adopt the layered software archi-

tecture illustrated in Figure 1 to isolate these differences as much as feasible. The primary

objective of this layered software architecture is to separate concerns such that porting or

refactoring one layer (e.g., manycore parallelism) has minimal impact on the remaining lay-

ers. In this architecture the lowest-level computational kernels are stateless functions that

perform their computations on data provided through the manycore resource management

layer.

A primary function of the intra-node (manycore) resource management layer is to dis-

patch the stateless computational kernels to be called in parallel on each available thread.

This is the intended functionality of the ThreadPool library, as well as other libraries and

programming languages. A well-known library supporting homogeneous manycore paral-

lelism is the Intel Threading Building Blocks (TBB) [4], which provides a C++ interface

to manage thread-parallel execution of C++ functions. A well-known language supporting

heterogeneous manycore parallelism is CUDA [9], which supports thread-parallel execu-

tion of functions written in the CUDA language on GPGPU manycores manufactured by

NVIDIA [8].

The ThreadPool library provides a simple, minimalistic, and highly portable package

with which HPC applications can effectively exploit homogeneous manycore parallelism;

and through which the performance implications of this architectural layer can be easily

explored. It is written in the standard C programming language and utilizes a small portion

of the standard pthreads [3] in Linux environments. This report describes the application

9



Figure 1. Software layers for the separation of concerns within

HPC applications exploiting both distributed and manycore paral-

lelism

programmer interface (API) and performance of the ThreadPool library available through

the Trilinos project [11].
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2 Application Programmer Interface (API)

The ThreadPool manages a set of parallel threads running on the local computational node

and sharing the resources of that computational node. An application can dispatch thread-

parallel work, defined by a work subprogram and work information, to the ThreadPool.

The ThreadPool causes each parallel thread, including the application’s main thread, to call

the application’s work subprogram with the application’s work information. The Thread-

Pool application programmer interface (API), ThreadPool implementation, and applica-

tion’s work subprograms conform to the standard C programming language.

The ThreadPool has four states: NULL, BLOCKED, READY, and ACTIVE. These

states and state transitions are illustrated in the ThreadPool state diagram given in Figure 2.

Each state transition occurs through application calls to the ThreadPool functions noted in

Figure 2.

Figure 2. ThreadPool state diagram with state transitions identi-

fied by thread pool functions

The ThreadPool is in the ACTIVE state while running an application’s work subpro-

gram. A work subprogram may be run in several different thread-parallel modes, as de-

scribed in Sections 2.2-2.4. An application selects the thread-parallel mode by calling the

associated version of a TPI Run * function.

11



2.1 Initialization, Finalization, and Blocking

2.1.1 TPI Init( int thread count )

The ThreadPool starts in the NULL state, without any additional threads of execution. An

application calls the TPI Init function to create thread count-1 threads and transition

the ThreadPool from the NULL state to the READY state. This TPI Init function can

only be called when the ThreadPool is in the NULL state. These created threads are in

addition to the application’s main thread, for a total of thread count available threads of

execution. While in the READY state the ThreadPool is ready to dispatch work routine to

threads.

Thread creation and initialization is a time consuming operation. As such the Thread-

Pool creates threads during initialization and then holds them in the READY state for sub-

sequent use by the application. Threads in the READY state are continually running on

the manycore CPU and polling the ThreadPool for work to be performed. This strategy

minimizes the time required to dispatch work to threads by maintaining the threads in this

ready to run state.

It is recommended that the number of requested threads, thread count, be no greater

than the number of available processing cores. If more threads are requested then the

threads will be required to block and unblock (i.e., context switch) in order for all of the

threads to execute. This blocking and unblocking introduces overhead which degrades

thread-parallel performance.

2.1.2 TPI Finalize()

While in the READY state an application calls TPI Finalize to destroy the created threads

and transition the ThreadPool to the NULL state. A call to TPI Finalize can be followed

by a call to TPI Init to reinitialize the ThreadPool with a different number of threads.

2.1.3 TPI Block() and TPI Unblock()

While in the READY state the created threads are running and consuming CPU resources.

If an application creates additional non-ThreadPool threads, either explicitly or through a

different parallel threading library, the ThreadPool threads in the READY state will contin-

ually compete with those non-ThreadPool threads for CPU resources. An application may

block the ThreadPool created threads to preempt this competition for CPU resources. The

TPI Block() blocks the ThreadPool created threads and transitions the ThreadPool from

the READY state to the BLOCKED state.

An application unblocks the ThreadPool created threads by calling TPI Unblock().

12



This function returns the ThreadPool to the READY state with the ThreadPool created

threads running and polling the ThreadPool for work. Blocking and unblocking created

threads is a time consuming operation; however, it is not as time consuming as destruction

and creation of threads.

2.1.4 Intended Use

An application code initializes the ThreadPool, calls a sequence of algorithms, and then

finalizes the ThreadPool. An algorithm is assumed to run many thread-parallel computa-

tional kernels through a single threading mechanism; e.g., ThreadPool, OpenMP, or TBB.

An algorithm which runs computational kernels through the ThreadPool mechanism would

unblock the worker threads, run its sequence of thread-parallel computational kernels, and

then return the worker threads to the blocked state. This assumed application and algorithm

flow is summarized in Figure 3.

#include<TPI.h>

int main(...)

{

TPI_Init( thread_count );

/*

* Application’s program control flow

* calls application’s algorithms.

*/

TPI_Finalize();

}

void an_application_algorithm(...)

{

const int was_blocked = TPI_Isblocked();

if ( was_blocked ) TPI_Unblock();

/*

* Run many thread-parallel computational kernels...

*/

if ( was_blocked ) TPI_Block();

return ;

}

Figure 3. Assumed work flow for an application and its algo-

rithms
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2.2 Running Work Subprograms

While in the READY state an application calls one of the TPI Run functions to dispatch

work subprograms to be called on all available threads, including the application’s main

thread. A TPI Run function can only be called when the ThreadPool is in the READY

state. While an application’s work subprogram is running the ThreadPool is in the ACTIVE

state. When all invocations of the work subprogram return, the ThreadPool returns to the

READY state.

2.2.1 Work Subprogram

An application’s work subprogram is called by the ThreadPool an application-specified

number of times. Each call to the work subprogram is responsible for performing an

application-specified portion of the computational work. Two pieces of information is re-

quired by a call to the work subprogram: (1) the computational work to be performed and

(2) a means of partitioning this work.

An application’s work subprogram is a function conforming to the C language interface

defined in Figure 4. A work subprogram determines which portion of work that it should

perform from members of the input TPI Work Struct argument.

struct TPI_Work_Struct {

const void * info ; /**< Shared info input to TPI_Run */

void * reduce ; /**< Data for reduce operation, if any */

int count ; /**< Count of work requested via TPI_Run */

int rank ; /**< Rank of work for the current call */

int lock_count ; /**< Count of locks requested via TPI_Run */

};

typedef const struct TPI_Work_Struct TPI_Work ;

typedef void (*TPI_work_subprogram)( TPI_Work * work );

Figure 4. TPI work subprogram C language interface defined in

the TPI.h header file

• The work->info member provides a pointer to application-provided work informa-

tion. This work information is shared by all calls to a work subprogram on all threads.

It is declared constant to promote safe multi-threaded access.

• The work->countmember identifies the total number times the work subprogram is

being called during a single call to a TPI Run function.

14



• The work->rank member is given a unique value for each call of the work subpro-

gram. These values are in the range [0..work->count-1]. Due to non-determinism of

thread-execution there is no guaranteed correlation between the work->rank value

and the calling order of the work subprogram. These work->rank and work->count

members provide the minimal information required for a call to a work subprogram

to determine its portion of the total work to be performed.

The remaining TPI Work Structmembers are described with respect to the calling TPI Run

functions.
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2.2.2 Calling Work Subprograms via TPI Run threads(. . . )

int TPI_Run_threads( TPI_work_subprogram work_subprogram ,

const void * work_info ,

int lock_count /* = 0 */ );

The TPI Run threads function is used to call an application’s work subprogram once

on each available thread, both main and created threads. A simple use of this function to

perform a thread-parallel Y = α ∗X +Y operation is illustrated in Figure 5.

typedef struct {

int n ;

double a ;

double * x ;

double * y ;

} WorkInfo ;

void daxpy( int n , double a , double * x , double * y )

{

WorkInfo work_info = { n , a , x , y };

TPI_Run_threads( tpi_daxpy , & work_info , 0 );

}

void tpi_daxpy( TPI_Work * work )

{

const WorkInfo * const info = (const WorkInfo *) work->info ;

int begin , end , i ;

compute_span_of_work( work->count , work->rank , info->n , & begin , & end );

for ( i = begin ; i < end ; ++i ) {

work->y[i] += work->a * work->x[i] ;

}

}

Figure 5. Example implementation of a simple, thread parallel

AXPY operation using TPI Run threads

When the application’s work subprogram is called by each thread the TPI Work argu-

ment (see Figure 4) is populated with the following information.

• work->info = pointer to work info — the application-supplied shared work data,

• work->count = the total number of threads calling the work subprogram, and

• work->rank = the rank of the calling thread.

16



2.2.3 Calling Work Subprograms via TPI Run(. . . )

int TPI_Run( TPI_work_subprogram work_subprogram ,

const void * work_info ,

int work_count ,

int lock_count /* = 0 */ );

An application can specify that the work subprogram is called work count times, re-

gardless of the number of available threads. The ThreadPool threads use an internally-

shared work counter to guarantee the correct number of calls, and to provide a unique

work->rank for each call. In this interface the TPI Work Struct is populated with the

following information.

• work->info = pointer to work info — the application’s shared work data,

• work->count = work count — the specified number of calls to the work subpro-

gram, and

• work->rank = the rank of the call out of the specified number of calls.

This interface is intended for applications that (1) have a large amount of work to per-

form and (2) have units of work with an irregular computational load. In this situation

the application can partition its irregular work into many more units of work that there

are threads, and then dispatch the work subprogram to process these work count units of

work. As each thread completes a call to the application’s work subprogram it will claim

the next unit of work from the shared work counter.

This interface provides an application with a means for automatically (but only approx-

imately) balancing computational work among threads. The quality of this load balancing

is dependent upon the the variability of the work load among the units of work.

2.3 Running Work Subprograms with Locks

When a work subprogram updates a shared variable or data structure that update must be

thread safe. One strategy for thread safe updates is with mutually exclusive locks (referred

to as mutex in the pthreads API). Locks provide mutually exclusive execution of those por-

tions of a work subprogram that access a shared variable or data structure that is updated

by the work subprogram. This usage is illustrated by the simple, thread-parallel implemen-

tation of a dot product given in Figure 6.

In the illustrative implementation (Figure 6), each thread-parallel call to tpi ddot

has its own thread-local accumulation variable local result. Summation of the local

accumulation into the global accumulation is thread safe by the calls to TPI Lock and

TPI Unlock. The first thread to arrive at TPI Lock acquires the mutually exclusive lock

and proceeds with the local-to-global accumulation. If a second thread arrives at this func-

17



typedef struct {

int n ;

double * result_pointer ;

const double * x ;

const double * y ;

} WorkInfo ;

double ddot( int n , const double * x , const double * y )

{

double result = 0.0 ;

WorkInfo work_info = { n , & result , x , y };

TPI_Run_threads( tpi_ddot , & work_info , 1 /* lock_count */ );

return result ;

}

void tpi_ddot( TPI_Work * work )

{

const WorkInfo * const info = (const WorkInfo *) work->info ;

double local_result = 0.0 ;

int begin , end , i ;

compute_span_of_work( work->count , work->rank , info->n , & begin , & end );

for ( i = begin ; i < end ; ++i ) {

local_result += work->y[i] * work->x[i] ;

}

TPI_Lock(0); /* probable blocking */

*(work->result_pointer) += local_result ; /* serialized */

TPI_Unlock(0);

}

Figure 6. Example implementation for a simple, thread par-

allel DDOT operation using TPI Run threads, TPI Lock, and

TPI Unlock

tion call it will block and wait for the first thread to release the lock via TPI Unlock. Once

the first thread releases the lock the second thread unblocks, acquires the lock, and proceeds

with its own contribution to the summation.

Using mutually exclusive locks has the performance liabilities of

• serializing thread execution between TPI Lock and TPI Unlock,

• introducing overhead for blocking and unblocking threads, and

• introducing a non-deterministic race condition for the local-to-global accumulation.

The serialization and overhead liabilities increase execution time. The non-deterministic

liability can cause computions to be non-repeatable. All of these liabilities can be addressed

for reduction operations through the following section.

18



2.4 Running Work Subprograms with Reductions

Alternate versions of the TPI Run and TPI Run threads functions, TPI Run reduce and

TPI Run threads reduce respectively, are defined to support efficient reduction opera-

tions. An example usage of this reduction-supporting interface is given in Figure 7.

typedef void (*TPI_reduce_init)( TPI_Work * work );

typedef void (*TPI_reduce_join)( TPI_Work * work , const void * reduce );

int TPI_Run_threads_reduce( TPI_work_subprogram work_subprogram ,

const void * work_info ,

TPI_Reduce_join reduce_join ,

TPI_Reduce_init reduce_init ,

int reduce_size ,

void * reduce_data );

int TPI_Run_reduce( TPI_work_subprogram work_subprogram ,

const void * work_info ,

int work_count ,

TPI_Reduce_join reduce_join ,

TPI_Reduce_init reduce_init ,

int reduce_size ,

void * reduce_data );

work->reduce: Each call to the work subprogram accumulates its portion of the re-

duction operation into a reduction variable, pointed to by the work->reduce argument.

Each call to the work subprogram has exclusive access to the reduction variable — no

locking is required. Exclusive access is guaranteed by each thread having its own copy of

the reduction variable. This copy is allocated to be reduce size bytes and is initialized by

a call to the application-provided reduce init function.

reduce join: As threads complete their calls to the work subprogram the per-thread

reduction variables are reduced (joined together) via the application’s reduce join func-

tion. The final result is reduced into the application-provided reduction variable pointed

to by the reduce data argument. These join operations occur without additional serial-

ization, without extra runtime overhead, and are deterministic. Thus for algorithms with

reduction operations, or with updates to shared variables which can be expressed as reduc-

tion operations, this interface resolves the performance liabilities of the locking / unlocking

approach.
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typedef struct {

int n ;

const double * x ;

const double * y ;

} WorkInfo ;

double ddot( int n , const double * x , const double * y )

{

double result = 0.0 ;

WorkInfo work_info = { n , & result , x , y };

TPI_Run_threads_reduce( tpi_ddot , & work_info ,

tpi_ddot_join , tpi_ddot_init ,

sizeof(result) , & result );

return result ;

}

void tpi_ddot( TPI_Work * work )

{

const WorkInfo * const info = (const WorkInfo *) work->info ;

double * const local_result = (double*) work->result ;

int begin , end , i ;

compute_span_of_work( work->count , work->rank , info->n , & begin , & end );

for ( i = begin ; i < end ; ++i ) {

*local_result += work->y[i] * work->x[i] ;

}

}

void tpi_ddot_join( TPI_Work * work , const void * reduce )

{ *((double*) work->reduce) += *((const double*) reduce); }

void tpi_ddot_init( TPI_Work * work }

{ *((double*) work->reduce) = 0 ; }

Figure 7. Example implementation of a simple, thread parallel

DDOT operation using TPI Run threads reduce
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3 Performance Considerations

The ThreadPool manages a set of parallel pthreads [3] to run on a CPU-multicore node.

The purpose of these threads is to support thread-parallel execution of high performance

computing (HPC) work subprograms. As such the implementation of the ThreadPool ad-

dresses the following potential performance impediments.

• The time required to create and destroy threads.

• The time required to block and unblock threads.

• Sharing CPU resources with threads that exist outside of the ThreadPool.

• Serialization of code segments within the HPC kernel.

3.1 Pool of Threads

The ThreadPool creates a pool of threads at initialization, holds them ready to execute

HPC work subprograms, and terminates the threads only upon request (Figure 2). It is

intended for the HPC application to initialized the ThreadPool when it begins execution

and terminate the ThreadPool only after all of the application’s work has been completed.

This thread pool strategy pays the time-cost of creating and deleting threads only once.

3.2 Ready, Spinning Threads

A thread is either running or blocked on the compute node. When a thread is running

(1) it is assigned to a CPU-core and (2) its instructions and data are present in the nodes’

main memory and cache memory; within limitations of the node’s capacity and operating

system kernel. When a thread is blocked its instructions and data may be ejected from cache

memory or even swapped out of main memory. Activating a blocked thread can include

time-costs of (1) reassigning the thread to a CPU-core, (2) reloading its instructions and

data into main memory and cache memory.

The time-cost of unblocking a blocked thread is minimized by keeping threads actively

running on the CPU-cores, even when they are doing no work. Spinning is the term associ-

ated with threads which are actively running and waiting for work. When the ThreadPool is

in the READY state (Figure 2) the created threads are spinning. When an application calls

one of the TPI Run functions the ThreadPool attaches the application’s work subprogram

and work information to each thread, and these threads then call the work subprogram in

thread-parallel.
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3.3 Blocking Threads

An application may utilize multiple thread-parallel capabilities such as this ThreadPool,

OpenMP [10], Intel threading builing blocks (TBB) [4], or Boost’s C++ thread pool [6].

If the ThreadPool created threads are spinning in the READY state then these threads will

compete with other thread-parallel capabilities for CPU resources. As such the Thread-

Pool provides an application with a means of blocking and unblocking ThreadPool created

threads. As previously noted, a blocked thread is detached from a CPU core and may have

its instruction and data ejected from cache or entirely swapped out of main memory.

3.4 Work Completion and Reductions

Every call to a TPI Run function waits for all created threads to return to the READY state

before returning to the application. This completion operation is a parallel collective barrier

in which the application’s main thread of execution cannot proceed until all created threads

have completed. The barrier is a parallel reduction operation with the reduced data being

the created threads’ transition from the ACTIVE state to the READY state. This reduction

is implemented as a fan-in operation with the application’s main thread of execution being

the root of the fan-in tree.

An application’s parallel reduction operations (Section 2.4) are attached to the work-

completion barrier. This implementation performs the given reduction operation without

having to introduce locking or additional synchronizations. Furthermore, the reduction is

deterministic due to the deterministic fan-in operation for the work-completion barrier.
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4 Hybrid Parallel Performance

Runtime performance is investigated through the hybrid parallel implementation of a sim-

ple “mini-application.” This mini-application generates a parallel distributed sparse matrix

and then applies conjugate gradient solution algorithm iterations to that system of equa-

tions. The sparse matrix is generated from applying a 27-point stencil to a regular three

dimensional grid, resulting in 27 non-zero coefficients per matrix row associated with loca-

tions in the interior of the grid. The distribution of the sparse matrix is obtained by applying

a recursive coordinate bisection [1] partitioning to the grid.

Performance is studied by running this mini-application on a hybrid parallel machine.

This mini-application is run in the following three modes.

• An all-MPI mode where one MPI process is run on each CPU core.

• A one-MPI-process-per-node mode where one worker thread is created for each ad-

ditional CPU core on the node.

• A one-MPI-process-per-socket mode where one MPI process is run on each CPU

socket and one worker thread is created for each additional CPU core on the socket.
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4.1 Parallel Conjugate Gradient Algorithm Iteration

A simple conjugate gradient solver algorithm for a sparse linear system of equations is im-

plemented using two-level parallelism: MPI for inter-process parallelism and ThreadPool

for intra-process parallelism. This parallel algorithm can be implemented with a small num-

ber of basic linear algebra subprogram (BLAS) kernels: y = x, dot(x,y), y = α ∗x+β ∗y,

and y = A∗x. For intra-process thread-level parallelism each call to a kernel will have run-

time overhead starting and waiting on the local threads. This overhead can be minimized

by fusing parallel kernels, as presented in Algorithm 1.

begin parallel symmetric conjugate gradient algorithm
Input: A ≡ sparse symmetric matrix

Input: b ≡ right-hand-side vector

InOut: x ≡ initial guess, solution vector

Data: r ≡ residual vector

Data: p ≡ solution vector update, length = # columns of A

Data: Ap ≡ residual vector update

r = b ; /* parallel */

p = x ; /* parallel */

Ap = A∗p ; /* parallel */

r = r−Ap ; δ = dot(r,r) ; /* fused parallel */

β = 0 ; /* serial */

while tolerance < δ and within iteration limit do /* serial */

p = r+β ∗p ; /* parallel */

Ap = A∗p ; γ = dot(Ap,p) ; /* fused parallel */

α = δ/γ ; β = δ ; /* serial */

x = x+α ∗p ; r = r−α ∗Ap ; δ = dot(r,r) ; /* fused parallel */

β = δ/β ; /* serial */

end

end

Algorithm 1: Conjugate gradient algorithm with fused parallel kernels

In the conjugate gradient algorithm the matrix vector multiplication step is immediately

followed by an inner product of the input and output vectors. Fusing these steps into a

single parallel kernel eliminates the thread-wait and thread-start overhead associated with

completing the first kernel and starting the second kernel. A thread-parallel work kernel

for this operation could separate or fuse these steps.
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4.2 Hybrid Fused Parallel Sparse Matrix Vector Multiplication

Algorithm 2 describes a hybrid parallel fused implementation of the matrix-vector multiply

followed by a dot product of the input and output vectors. In this algorithm the thread work

kernel performs both the matrix-vector multiply and the dot product. Internal to the thread

work kernel, these two operations can be implemented separate serial linear algebra kernels.

begin Fused parallel function: γ = dot((y = A∗x),x)
Input: AP ≡ this process’ rows of matrix A

InOut: xP ≡ this process’ portion of vector x spans columns of AP

Output: yP ≡ this process’ portion of vector y

Output: γ ≡ result of dot product on all processes

Gather off-process columns into xP via MPI communication

Call TPI Run threads reduce( work kernel , reduction kernel )

Each thread calls work kernel
Input: AP,T ≡ this thread’s span of matrix AP

Input: xP ≡ this process’ complete input vector

Output: yP,T ≡ this thread’s span of vector yP

Output: γT ≡ this thread’s contribution to γ

yP,T = AP,T ∗xP

γT = dot(yP,T,xP,T)
end

Each thread calls reduction kernel
InOut: γT ≡ this thread’s contribution to γ
Input: γU ≡ another thread’s contribution to γ

γT = γT + γU

end

end

Reduce γ among all processes via MPI Allreduce

end

Algorithm 2: Fused hybrid parallel kernel for γ = dot((y = A∗x),x)
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4.3 Performance Study

This performance study was run on an HPC cluster at Sandia National Laboratories. This

cluster (called glory) consists of 272 quad-socket compute nodes with 2.2 GHz AMD

quad-core CPUs, and an Infiniband interconnect. The mini-application was compiled at

optimization level 3, using the Intel-11 compiler, OpenMPI, and standard pthreads.

The mini-application is run on 4, 8, 16, and 32 compute nodes with

• one MPI process on each available core,

• one MPI process on each available socket and worker threads created on each re-

maining core, and

• one MPI process on each node and worker threads created on each remaining core.

The compute node architecture provides non-uniform memory access (NUMA) perfor-

mance between the CPUs and main memory. As such the Linux non-uniform memory

access control (numactl) capability is used to attach MPI processes to sockets or cores.

4.3.1 Processes versus Threads

Results from the performance studies are summarized in Figures 8-11. Each of these

graphs is for a fixed number of compute nodes and thread, where each line is for one

of the three approaches to allocating MPI process and pthreads to cores (MPI-per-core,

MPI-per-socket,and MPI-per-node). The objective of these studies is to compare the per-

formance of the three MPI process versus pthread allocation approaches over a range of

problem sizes. This comparison method is chosen to make apparent the impact of cache

memory and non-uniform memory access on performance.

Each graph (Figures 8-11) plots the aggregate gigaflop performance attained from par-

allel CG iterations over a range of problem size, from less than 1e4 to more than 1e7 grid

points (matrix rows). For small problem sizes of less than 1e4 grid points the message

passing, thread startup, and thread completion overhead dominates performance — yield-

ing poor gigaflop performance. From this small problem size, performance of the hybrid

parallel approaches improves rapidly with problem size. However, once the matrix and vec-

tors exceeds the CPUs’ cache size performance drops significantly and becomes limited by

main memory access performance. Furthermore, the performance drop of the MPI-per-

node approach is worse due to threads running on four different sockets accessing shared

memory allocated physically near its own socket. This is in contrast to the MPI-per-socket

and MPI-per-core results where each thread only accesses NUMA memory associated with

its own socket.
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The approach of using one-MPI-process-per-socket, with one thread per core, consis-

tently yielded the best performance. This result is especially pronounced for the strong

scaling (i.e., speed up) results presented in Figures 12 and 13. These results are for matri-

ces with 1M and 1.7M rows respectively.

Strong scaling results presented in Figures 12 and 13 are problem dependent. This

dependency is readily apparent in Figure 14 which plots performance versus problem size

for each of the one-MPI-process-per-socket test cases.

The following three observations are apparent from these performance results.

• Strong scaling of the one-MPI-process-per-node and one-MPI-process per socket is

dramatically better than the one-MPI-process-per-core for small matrices.

• Performance of the one-MPI-process-per-node mode is significantly worse for large

matrices.

• Performance of the one-MPI-process-per-socket mode is better for (nearly) all sizes

of matrices.

Thus for this mini-application running on Sandia’s glory cluster, with its NUMA compute

nodes, the best performance is achieved with a hybrid parallel strategy of allocating one

MPI process to each CPU socket and then applying thread parallelism to utilize the three

remaining cores within each socket. The degree to which performance is better depends

upon the size and layout of the computational data relative to the CPU cache. If this data

can be held in CPU cache for a relatively large number of computations then performance

is show to be dramatically better.
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Figure 8. Comparison of hybrid parallel conjugate gradient itera-

tion performance for 4 compute nodes with 64 threads: p4 x t16 =

one MPI process per node, p16 x t4 = one MPI process per socket,

and p64 x t1 = one MPI process per core.

Figure 9. Comparison of hybrid parallel conjugate gradient it-

eration performance for 8 compute nodes with 128 threads: p8 x

t16 = one MPI process per node, p32 x t4 = one MPI process per

socket, and p128 x t1 = one MPI process per core.
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Figure 10. Comparison of hybrid parallel conjugate gradient it-

eration performance for 16 compute nodes with 256 threads: p16

x t16 = one MPI process per node, p64 x t4 = one MPI process per

socket, and p256 x t1 = one MPI process per core.

Figure 11. Comparison of hybrid parallel conjugate gradient it-

eration performance for 32 compute nodes with 512 threads: p32

x t16 = one MPI process per node, p128 x t4 = one MPI process

per socket, and p512 x t1 = one MPI process per core.
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Figure 12. Hybrid parallel conjugate gradient iteration strong

scaling for 1M rows: one MPI process with 4 threads per CPU

socket versus one MPI process per CPU core.

Figure 13. Hybrid parallel conjugate gradient iteration strong

scaling for 1.7M rows: one MPI process with 4 threads per CPU

socket versus one MPI process per CPU core.
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Figure 14. Hybrid parallel conjugate gradient iteration strong

scaling with one MPI process and 4 threads per CPU socket.

Strong scaling over 64, 128, 256, and 512 threads is observed for a

range of problem sizes by noting the associated problem-size point

on each curve.
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4.3.2 Fused Parallel Kernels

Thread-parallel performance is most significantly improved by fused parallel kernels, as per

Algorithms 1 and 2, when thread start/completion overhead is costly compare to kernel’s

computational costs. This result can be seen in Figures 15 and 16, where CG iteration

performance improvements are greater for small matrices than for larger matrices. In these

graphs the speed up is computed as the performance difference between the fused parallel

kernel and conventional parallel kernel implementations, divided by the performance of the

conventional parallel kernel implementation.

Figure 15. Hybrid parallel conjugate gradient iteration relative

performance improvement for parallel fused kernels with 4 com-

pute nodes and 64 threads: p4 x t16 = one MPI process per node

and p16 x t4 = one MPI process per socket.
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Figure 16. Hybrid parallel conjugate gradient iteration relative

performance improvement for parallel fused kernels with 32 com-

pute nodes and 512 threads: p32 x t16 = one MPI process per node

and p128 x t4 = one MPI process per socket.
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5 Conclusion

The ThreadPool library within Trilinos provides a simple, minimalistic API for HPC ap-

plications to effectively use hybrid parallelism on HPC systems with CPU-based manycore

nodes. The ThreadPool library is currently implemented in the standard C language us-

ing the standard pthread library. The ThreadPool library creates a pool of worker threads

which are held ready for use by the application. The ThreadPool API assumes an appli-

cation programming model (Figure 1) which separates its software into lower-level state-

less computational kernels and higher-level control flow and resource management com-

ponents. ThreadPool functions are called by an application to run computational kernels

thread-parallel. Inter-thread synchronization is supported through mutually exclusive exe-

cution locks, or through more efficient reduction operations.

A simple mini-application performing conjugate gradient solution algorithm iterations

was run on Sandia National Laboratories’ glory cluster with 272 quad-socket / quad-core

compute nodes with non-uniform memory access (NUMA). This mini-application on this

cluster demonstrated significantly improved performance, for CPU cache-resident prob-

lems, by nesting thread-parallelism within CPU-cores, while retaining MPI-parallelism

between CPU-sockets. For large problems with performance limited by access to main

memory the performance improvement is relatively small. These results show that hy-

brid thread-parallelism nested within MPI-parallelism can improve HPC application per-

formance when run on clusters of multicore compute nodes.

5.1 To-be-done: Comparison other Threading Capabilities

Hybrid parallel performance results presented in this report use standard pthreads man-

aged by the ThreadPool interface. Other thread parallel mechanisms such as OpenMP and

TBB could yield different performance results. The hybrid parallel conjugate gradient per-

formance test cases could be re-implemented using OpenMP and TBB to compare and

evaluate the ThreadPool library’s efficiency and API compared to these other threading

capabilities.
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