
UG459 v3.2 September 21, 2010 www.xilinx.com FFT v8.0 Bit Accurate C Model

LogiCORE™ IP
Fast Fourier Transform v8.0
Bit Accurate C Model

User Guide

UG459 v3.2 September 21, 2010

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com UG459 v3.2 September 21, 2010

Xilinx is providing this product documentation, hereinafter “Information,” to you “AS IS” with no warranty of any kind, express or implied.
Xilinx makes no representation that the Information, or any particular implementation thereof, is free from any claims of infringement. You
are responsible for obtaining any rights you may require for any implementation based on the Information. All specifications are subject to
change without notice.

XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO THE ADEQUACY OF THE INFORMATION OR
ANY IMPLEMENTATION BASED THEREON, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OR REPRESENTATIONS THAT
THIS IMPLEMENTATION IS FREE FROM CLAIMS OF INFRINGEMENT AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE.

Except as stated herein, none of the Information may be copied, reproduced, distributed, republished, downloaded, displayed, posted, or
transmitted in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise, without
the prior written consent of Xilinx.

© 2007-2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx
in the United States and other countries. MATLAB is a registered trademark of The MathWorks, Inc. All other trademarks are the property
of their respective owners.

Revision History
The following table shows the revision history for this document.

Date Version Revision

10/17/07 1.0 Initial Xilinx release

09/19/08 2.0 Updated for Fast Fourier Transform v6.0

06/24/09 3.0 Updated for Fast Fourier Transform v7.0

04/19/10 3.1 Updated for Fast Fourier Transform v7.1

09/21/10 3.2 Updated for Fast Fourier Transform v8.0

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 3
UG459 v3.2 September 21, 2010

Revision History . 2

Preface: About This Guide
Contents . 5
Conventions . 5

Typographical . 5
Online Document . 6

Chapter 1: Introduction
Features. 7
Overview . 7
Additional Core Resources . 8
Technical Support. 8
Feedback. 8

FFT v8.0 Bit Accurate C Model and IP Core . 8
Document . 8

Chapter 2: User Instructions
Unpacking and Model Contents . 9
Installation . 9
Software Requirements . 10

Chapter 3: FFT v8.0 Bit Accurate C Model
FFT v8.0 C Model Interface . 11

Create a State Structure . 11
Simulate the FFT Core . 13
Destroy the State Structure . 18

C Model Example Code . 18
Compiling with the FFT v8.0 C Model . 18

Linux (32-bit and 64-bit) . 18
Windows (32-bit and 64-bit) . 18

FFT v8.0 MATLAB Software MEX Function. 19
Building the MEX Function . 19
Installing and Running the MEX Function . 20

MEX Function Example Code. 23
Modeling Multichannel FFTs. 24

Table of Contents

http://www.xilinx.com

4 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 5
UG459 v3.2 September 21, 2010

Preface

About This Guide

This user guide provides information about the Xilinx LogiCORE™ IP Fast Fourier
Transform v8.0 Bit Accurate C Model for 32-bit and 64-bit Linux and Windows platforms.

Contents
This guide contains the following chapters:

• “About This Guide” introduces the organization and purpose of this guide and
provides the conventions used in this document.

• Chapter 1, “Introduction” describes the core and related information, including
additional resources, technical support, and submitting feedback to Xilinx.

• Chapter 2, “User Instructions” describes basic instructions for unpacking, the
C model contents, and installation.

• Chapter 3, “FFT v8.0 Bit Accurate C Model” provides a description of the C model
interface, example code, compiling with the C model, the MATLAB® software MEX
function, and modeling multichannel FFTs.

Conventions
This document uses the following conventions.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you enter
in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select from
a menu File ∅ Open

Keyboard shortcuts Ctrl+C

http://www.xilinx.com

6 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Preface: About This Guide

Online Document
The following conventions are used in this document for cross-references and links to
URLs.

Italic font

Variables in a syntax statement
for which you must supply
values

ngdbuild design_name

References to other manuals
See the User Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol, the
two nets are not connected.

Dark Shading
Items that are not supported or
reserved

This feature is not supported

Square brackets []

An optional entry or parameter.
However, in bus specifications,
such as bus[7:0], they are
required.

ngdbuild [option_name]
design_name

Braces { }
A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar |
Separates items in a list of
choices

lowpwr ={on|off}

Angle brackets < >
User-defined variable or in code
samples

<directory name>

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . .
Repetitive material that has
been omitted

allow block block_name loc1
loc2 ... locn;

Notations

The prefix ‘0x’ or the suffix ‘h’
indicate hexadecimal notation

A read of address 0x00112975
returned 45524943h.

An ‘_n’ means the signal is
active low usr_teof_n is active low.

Convention Meaning or Use Example

Convention Meaning or Use Example

Blue text
Cross-reference link to a location
in the current document

See “Installation” for more
information.

See “Simulate the FFT Core” in
Chapter 3 for detailed
information.

Blue, underlined text Hyperlink to a website (URL)
Go to www.xilinx.com for the
latest speed files.

http://www.xilinx.com
http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 7
UG459 v3.2 September 21, 2010

Chapter 1

Introduction

The Xilinx LogiCORE™ IP Fast Fourier Transform (FFT) v8.0 core has a bit accurate
C model designed for system modeling. A MATLAB® software MEX function for seamless
MATLAB software integration is also available.

Features
• Bit accurate with FFT v8.0 core

• Dynamic link library

• Available for 32-bit Linux, 64-bit Linux, 32-bit Windows, and 64-bit Windows
platforms

• MATLAB software MEX function

• Supports all features of the FFT core that affect numerical results

• Designed for rapid integration into a larger system model

• Example C++ and M code showing how to use the function is provided

Overview
The Xilinx LogiCORE IP FFT v8.0 has a bit accurate C model for 32-bit and 64-bit Linux
and 32-bit and 64-bit Windows platforms. The model has an interface consisting of a set of
C functions, which resides in a dynamic link library (shared library). Full details of the
interface are given in “FFT v8.0 C Model Interface” in Chapter 3. An example piece of C++
code showing how to call the model is provided. The model is also available as a MATLAB
software MEX function for seamless MATLAB software integration.

The model is bit accurate but not cycle accurate, so it produces exactly the same output
data as the core on a frame-by-frame basis. However, it does not model the core latency or
its interface signals.

The latest version of the model is available for download on the Xilinx LogiCORE IP FFT
web page at: www.xilinx.com/products/ipcenter/FFT.htm.

http://www.xilinx.com/products/ipcenter/FFT.htm
http://www.xilinx.com

8 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 1: Introduction

Additional Core Resources
For detailed information and updates about the FFT v8.0 core, see the following
documents, located on the FFT v8.0 product page at:
www.xilinx.com/products/ipcenter/FFT.htm

• Fast Fourier Transform v8.0 Product Specification (DS808)

• FFT v8.0 Release Notes

Technical Support
For technical support, go to www.xilinx.com/support. Questions are routed to a team with
expertise using the FFT v8.0 core.

Xilinx provides technical support for use of this product as described in LogiCORE IP Fast
Fourier Transform v8.0 Bit Accurate C Model User Guide (UG459) and the Fast Fourier
Transform v8.0 Product Specification (DS808). Xilinx cannot guarantee functionality or
support of this product for designs that do not follow these guidelines.

Feedback
Xilinx welcomes comments and suggestions about the FFT v8.0 core and the
accompanying documentation.

FFT v8.0 Bit Accurate C Model and IP Core
For comments or suggestions about the FFT v8.0 core and bit accurate C model, please
submit a WebCase from www.xilinx.com/support/clearexpress/websupport.htm. Be sure
to include the following information:

• Product name

• Core version number

• Explanation of your comments

Document
For comments or suggestions about the FFT v8.0 core documentation, please submit a
WebCase from www.xilinx.com/support/clearexpress/websupport.htm. Be sure to
include the following information:

• Document title

• Document number

• Page number(s) to which your comments refer

• Explanation of your comments

www.xilinx.com/support
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/support/clearexpress/websupport.htm
http://www.xilinx.com/products/ipcenter/FFT.htm
http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 9
UG459 v3.2 September 21, 2010

Chapter 2

User Instructions

Unpacking and Model Contents
Unzip the FFT v8.0 C model zip file. This produces the directory structure and files shown
in Table 2-1.

Installation
On Linux, ensure that the directory in which the files
libIp_xfft_v8_0_bitacc_cmodel.so and libstlport.so.5.1 are located is in
your $LD_LIBRARY_PATH environment variable.

On Windows, ensure that the directory in which the files
libIp_xfft_v8_0_bitacc_cmodel.dll and stlport.5.1.dll are located is
either in your %PATH% environment variable, or is the directory in which you will run
your executable that calls the FFT v8.0 C model.

Table 2-1: Files for the FFT v8.0 Bit Accurate C Model

File Description

README.txt Release notes

xfft_bitacc_cmodel_ug459.pdf This file

xfft_v8_0_bitacc_cmodel.h Model header file

libIp_xfft_v8_0_bitacc_cmodel.so Model shared object library (Linux
platforms only)

libstlport.so.5.1 STL portability library (Linux platforms
only)

libIp_xfft_v8_0_bitacc_cmodel.dll Model dynamically linked library
(Windows platforms only)

libIp_xfft_v8_0_bitacc_cmodel.lib Model library file for static linking
(Windows platforms only)

stlport.5.1.dll STL portability library (Windows
platforms only)

run_bitacc_cmodel.c Example code calling the C model

xfft_v8_0_bitacc_mex.cpp C++ wrapper for MEX function

make_xfft_v8_0_mex.m MEX function compilation script

run_xfft_v8_0_mex.m Example code calling the MEX function

http://www.xilinx.com

10 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 2: User Instructions

Software Requirements
The FFT v8.0 C model and MEX function were compiled and tested with the following
software:

Notes:

1. M file scripts are provided in the zip file to allow the MEX function to be compiled for
other versions of MATLAB software, and versions on different operating systems. See
“FFT v8.0 MATLAB Software MEX Function” for details.

2. MATLAB software requires at least GCC version 4.0.0 to build MEX functions for
Linux platforms.

Table 2-2: Supported Software

Platform C++ Compiler MATLAB Software

64-bit Linux GCC 4.1.1 See note 1 and note 2

32-bit Linux GCC 4.1.1 See note 1 and note 2

64-bit Windows Microsoft Visual Studio 2005 See note 1

32-bit Windows Microsoft Visual Studio 2005
(Visual C++ 8.0)

2008a (also see note 1)

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 11
UG459 v3.2 September 21, 2010

Chapter 3

FFT v8.0 Bit Accurate C Model

FFT v8.0 C Model Interface
Note: An example C++ file, run_bitacc_cmodel.c is included that demonstrates how to call the
FFT C model. See that file for examples of using the interface described below.

The C model is used through three functions, declared in the header file
xfft_v8_0_bitacc_cmodel.h:

struct xilinx_ip_xfft_v8_0_state* xilinx_ip_xfft_v8_0_create_state
(
 struct xilinx_ip_xfft_v8_0_generics generics
);

int xilinx_ip_xfft_v8_0_bitacc_simulate
(
 struct xilinx_ip_xfft_v8_0_state* state,
 struct xilinx_ip_xfft_v8_0_inputs inputs,
 struct xilinx_ip_xfft_v8_0_outputs* outputs
);

void xilinx_ip_xfft_v8_0_destroy_state
(
 struct xilinx_ip_xfft_v8_0_state* state
);

To use the model, first create a state structure using the first function,
xilinx_ip_xfft_v8_0_create_state. Then run the model using the second function,
xilinx_ip_xfft_v8_0_bitacc_simulate, passing the state structure, an inputs structure, and
an outputs structure to the function. Finally, free up memory allocated for the state
structure using the third function, xilinx_ip_xfft_v8_0_destroy_state. Each of these
functions is described fully in the following sections.

Create a State Structure
The first function, xilinx_ip_xfft_v8_0_create_state, creates a new state structure for the
FFT C model, allocating memory to store the state as required, and returns a pointer to that
state structure. The state structure contains all information required to define the FFT being
modeled. The function is called with a structure containing the core generics; these are all
of the parameters that define the bit accurate numerical performance of the core,
represented as integers, and are shown in Table 3-1.

http://www.xilinx.com

12 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 3: FFT v8.0 Bit Accurate C Model

Note: C_CHANNELS is not a generic used in the C model. The model is always single channel. To
model multiple channels in a multichannel FFT, see “Modeling Multichannel FFTs.”

The xilinx_ip_xfft_v8_0_create_state function fails with an error message and returns a
NULL pointer if any generic or combination of generics is invalid.

Table 3-1: FFT C Model Generics

Generic Description Permitted Values

C_NFFT_MAX log2(maximum
transform length)

3-16

C_ARCH Architecture 1 = Radix-4, Burst I/O
2 = Radix-2, Burst I/O
3 = Pipelined, Streaming I/O
4 = Radix-2 Lite, Burst I/O

C_HAS_NFFT Run-time configurable
transform length

0 = no, 1 = yes

C_USE_FLT_PT Core interface 0 = Fixed Point 1 = Single-Precision
Floating Point

C_INPUT_WIDTH Input data width
(bits)

8-34 32

C_TWIDDLE_WIDTH Phase factor width
(bits)

8-34 24-25

C_HAS_SCALING Scaling option:
unscaled or
determined by
C_HAS_BFP

0 = unscaled,
1 = see C_HAS_BFP

0

C_HAS_BFP Scaling option:
Applicable if
C_HAS_SCALING=1

0 = scaled,
1 = block floating
point

0

C_HAS_ROUNDING Rounding: 0 = truncation,
1 = convergent
rounding

0

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 13
UG459 v3.2 September 21, 2010

FFT v8.0 C Model Interface

Simulate the FFT Core
After a state structure has been created, it can be used as many times as required to
simulate the FFT core. A simulation is run using the second function,
xilinx_ip_xfft_v8_0_bitacc_simulate. Call this function with the pointer to the existing state
structure and structures that hold the inputs and outputs of the C model. The input
structure members are shown in Table 3-2.

Notes:

General

1. You are responsible for allocating memory for arrays in the inputs structure.

2. nfft input is only used with run-time configurable transform length (that is,
C_HAS_NFFT = 1). If the transform length is fixed (that is, C_HAS_NFFT = 0),
C_NFFT_MAX is used for nfft. In this case, nfft should be equal to C_NFFT_MAX, and
a warning is printed if it is not (but the model continues, using C_NFFT_MAX for nfft
and ignoring the nfft value in the inputs structure).

3. xn_re and xn_im must have 2nfft elements. xn_re_size and xn_im_size must be set to
2nfft.

4. xn_re and xn_im may be in natural or bit/digit-reversed sample index order. The
C model produces samples in the same ordering format as they were input.

FFTs with Fixed-Point Interface

1. Data in xn_re and xn_im must all be in the range -1.0 ≤ data < +1.0.

2. Data in xn_re and xn_im is of type double, but the model requires data in signed two's-
complement, fixed-point format with precision given by C_INPUT_WIDTH. The data
has a sign bit, then the binary point, and then (C_INPUT_WIDTH - 1) fractional bits.
The model checks the input data to see if it fits within this format and precision. If not,
it prints a warning, and internally rounds it using convergent rounding (halfway
values are rounded to the nearest even number) to the required precision. To
accurately model the FFT core, prequantize the input data to this required precision
before passing it to the model.

3. scaling_sch and scaling_sch_size are ignored entirely unless fixed scaling is used
(C_HAS_SCALING = 1 and C_HAS_BFP = 0).

4. scaling_sch is an array of integers, each of which indicates the scaling to be done in a
stage of the FFT processing. scaling_sch[0] is the scaling in the first stage,
scaling_sch[1] the scaling in the second stage, and so on. Note that this is the reverse of the

Table 3-2: Members of the Inputs Structure

Member Type Description

nfft int Transform length

xn_re double* Pointer to array of doubles: real part of input data

xn_re_size int Number of elements in xn_re array

xn_im double* Pointer to array of doubles: imaginary part of input data

xn_im_size int Number of elements in xn_im array

scaling_sch int* Pointer to array of ints containing scaling schedule

scaling_sch_size int Number of elements in scaling_sch array

direction int Transform direction: 1=forward FFT, 0=inverse FFT (IFFT)

http://www.xilinx.com

14 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 3: FFT v8.0 Bit Accurate C Model

scaling schedule vector applied to the IP core. The number of elements in the scaling_sch
array and the value of scaling_sch_size must be equal to the number of stages in the
FFT. This is dependent on the architecture, and on nfft, the point size of the transform:

a. Radix-4, Burst I/O (C_ARCH = 1) or Pipelined, Streaming I/O (C_ARCH = 3):
stages = ceil(nfft/2)

b. Radix-2, Burst I/O (C_ARCH = 2) or Radix-2 Lite, Burst I/O (C_ARCH = 4):
stages = nfft

5. If C_HAS_NFFT = 0, C_NFFT_MAX is used for nfft. The scaling in each stage is an
integer in the range 0-3, which indicates the number of bits the intermediate result will
be shifted right. So 0 indicates no scaling, 1 indicates a division by 2, 2 indicates a
division by 4, and 3 indicates a division by 8. Again, scaling_sch[0] is the scaling in the
first stage, scaling_sch[1] the scaling in the second stage, and so on. Insufficiently large
scaling results in overflow, indicated by the overflow output.

FFTs with Floating-Point Interface

1. Data in xn_re and xn_im must all be representable in IEEE-754 single-precision 32-bit
format.

2. Data in xn_re and xn_im is of type double, but the model requires data in single-
precision format, such that the values may be represented in the 32-bit float datatype.
The double values are explicitly cast to the float datatype internally. No range checking
is performed by the model prior to casting to float.

3. The model checks the input data for denormalized numbers, and if one is found, that
sample is set to zero at the input to the model.

4. If an Infinity or Not A Number (NaN) value is detected in the input data, all outputs in
that frame are invalidated and set to NaN in the output structure.

The outputs structure, a pointer which is passed to the xilinx_ip_xfft_v8_0_bitacc_simulate
function, has the members shown in Table 3-3.

Table 3-3: Members of the Outputs Structure

Member Type Description

xk_re double* Pointer to array of doubles: real part of output data

xk_re_size int Number of elements in xk_re array

xk_im double* Pointer to array of doubles: imaginary part of output data

xk_im_size int Number of elements in xk_im array

blk_exp int Block exponent (if block floating point is used)

overflow int Overflow occurred (if fixed scaling is used with a fixed-
point interface, or if a floating point interface is used)

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 15
UG459 v3.2 September 21, 2010

FFT v8.0 C Model Interface

Notes:

General

1. You are responsible for allocating memory for the outputs structure and for arrays in
the outputs structure.

2. xk_re and xk_im must have at least 2nfft elements. You must set xk_re_size and
xk_im_size to indicate the number of elements in xk_re and xk_im before calling the
FFT function. On exit, xk_re_size and xk_im_size are set to the number of elements
that contain valid output data in xk_re and xk_im.

3. The C model produces data in the same ordering format as the input data. Hence, if
xn_re and xn_im were provided in natural sample index order (0,1,2,3...), xk_re and
xk_im samples will also be in natural sample index order.

FFTs with Fixed-Point Interface

1. Data in xk_re and xk_im has the correct precision to model the FFT:

a. If the FFT is scaled or has block floating point (C_HAS_SCALING = 1,
C_HAS_BFP = 0 or 1, respectively), data in xk_re and xk_im is all in the range
-1.0 ≤ data < +1.0, the precision is C_INPUT_WIDTH bits with
C_INPUT_WIDTH-1 fractional bits. For example, if C_INPUT_WIDTH = 8,
output data is precise to 2-7 = 0.0078125 and is in the range -1.0 to +0.9921875, and
the binary representation of the output data has the format s.fffffff, where s is the
sign bit and f is a fractional bit.

b. If the FFT is unscaled (C_HAS_SCALING = 0), data in xk_re and xk_im grows
beyond ± 1.0, such that the binary point remains in the same place and there are
still (C_INPUT_WIDTH - 1) fractional bits after the binary point. In total, the
output precision is (C_INPUT_WIDTH + C_NFFT_MAX + 1) bits. For example, if
C_INPUT_WIDTH = 8 and C_NFFT_MAX = 3, output data is precise to
2-7 = 0.0078125 and is in the range -16.0 to +15.9921875, and the binary
representation of the output data has the format siiii.fffffff, where s is the sign bit,
i is an integer bit, and f is a fractional bit.

2. blk_exp is the integer block exponent. It is only valid (and non-zero) if block floating
point is used (C_HAS_SCALING = 1 and C_HAS_BFP = 1). It indicates the total
number of bits that intermediate values were shifted right during the FFT processing.
For example, if blk_exp = 5, the output data has been divided by 32 relative to the
magnitude of the input data.

3. overflow indicates if overflow occurred during the FFT processing. It is only valid (and
non-zero) if fixed scaling is used (C_HAS_SCALING = 1 and C_HAS_BFP = 0). A
value of 0 indicates that overflow did not occur; a value of 1 indicates that overflow
occurred at some stage in the FFT processing. To avoid overflow, increase the scaling at
one or more stages in the scaling schedule (scaling_sch input).

4. If overflow occurred with the Pipelined, Streaming I/O architecture (C_ARCH = 3)
due to differences between the FFT core and the model in the order of operations
within the processing stage, the data in xk_re and xk_im may not match the XK_RE
and XK_IM outputs of the FFT core. The xk_re and xk_im data must be ignored if the
overflow output is 1. This is the only case where the model is not entirely bit accurate
to the core.

http://www.xilinx.com

16 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 3: FFT v8.0 Bit Accurate C Model

FFTs with Floating-Point Interface

1. Data in xk_re and xk_im has the correct precision to model the FFT. The double-
precision output can be cast to single-precision without introducing error.

2. Overflow indicates if floating point exponent overflow occurred during the FFT
processing. A value of 0 indicates that overflow did not occur; a value of 1 indicates
that overflow occurred. Overflow is not set when a NaN value is present on the
output. NaN values can only occur at the FFT output when the input data frame
contains samples with value NaN or ± Infinity.

3. If overflow occurred, the output sample that overflowed will be set to ± Infinity,
depending on the sign of the internal result.

The xilinx_ip_xfft_v8_0_bitacc_simulate function checks the input and output structures
for errors. If the model finds a problem, it prints an error message and returns a value
xilinx_ip_xfft_v8_0_bitacc_simulate function as shown in Table 3-4.

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 17
UG459 v3.2 September 21, 2010

FFT v8.0 C Model Interface

If the xilinx_ip_xfft_v8_0_bitacc_simulate function returns 0 (zero), it completed
successfully and the outputs of the model are in the outputs structure.

Table 3-4: xilinx_ip_xfft_v8_0_bitacc_simulate Function Return Values

Return Value Meaning

0 Success.

1 state structure is NULL.

2 outputs structure is NULL.

3 state structure is corrupted (Radix-4, Burst I/O architecture).

4 state structure is corrupted (Radix-2 [Lite], Burst I/O architecture).

5 state structure is corrupted (Pipelined, Streaming I/O architecture).

6 nfft in inputs structure out of range (Radix-4, Burst I/O architecture).

7 nfft in inputs structure out of range (other architectures).

8 xn_re in inputs structure is a NULL pointer.

9 xn_re_size in inputs structure is incorrect.

10 data value in xn_re in inputs structure out of range -1.0 to < +1.0 (fixed point
input data only).

11 xn_im in inputs structure is a NULL pointer.

12 xn_im_size in inputs structure is incorrect.

13 data value in xn_im in inputs structure is out of range -1.0 to < +1.0 (fixed
point input data only).

14 scaling_sch in inputs structure is a NULL pointer.

15 scaling_sch_size in inputs structure is incorrect (Radix-4, Burst I/O or
Pipelined, Streaming I/O architectures).

16 scaling_sch_size in inputs structure is incorrect (Radix-2, Burst I/O or
Radix-2 Lite, Burst I/O architectures).

17 scaling value in scaling_sch in inputs structure out of range 0-3.

18 scaling value for final stage in scaling_sch in inputs structure out of range 0-
1 when nfft is odd and architecture is Radix-4, Burst I/O or Pipelined,
Streaming I/O.

19 direction in inputs structure is out of range 0-1.

20 xk_re in outputs structure is a NULL pointer.

21 xk_im in outputs structure is a NULL pointer.

22 xk_re_size in outputs structure is too small.

23 xk_im_size in outputs structure is too small.

http://www.xilinx.com

18 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 3: FFT v8.0 Bit Accurate C Model

Destroy the State Structure
Finally, the state structure must be destroyed to free up memory used to store the state,
using the third function, xilinx_ip_xfft_v8_0_destroy_state, called with the pointer to the
existing state structure.

If the generics of the core need to be changed, destroy the existing state structure and create
a new state structure using the new generics. There is no way to change the generics of an
existing state structure.

C Model Example Code
An example C++ file, run_bitacc_cmodel.c, is provided. This demonstrates the steps
required to run the model: set up generics, create a state structure, create inputs and
outputs structures, simulate the FFT, use the outputs, and finally destroy the state
structure. The code works for all legal combinations of generics. Simply modify the const
int declarations of generics at the start of function main(). The code also illustrates how to
model a multichannel FFT; see “Modeling Multichannel FFTs.”

The example code can be used to test your compilation process. See “Compiling with the
FFT v8.0 C Model.”

Compiling with the FFT v8.0 C Model
Place the header file, xfft_v8_0_bitacc_cmodel.h, with your other header files.

Compilation varies from platform to platform.

Linux (32-bit and 64-bit)
To compile the example code, run_bitacc_cmodel.c, first ensure that the directory in
which the files libIp_xfft_v8_0_bitacc_cmodel.so and libstlport.so.5.1 are
located is present on your $LD_LIBRARY_PATH environment variable. These shared
libraries are referenced during the compilation and linking process.

Place the header file and C++ source file in a single directory. Then in that directory,
compile using the GNU C++ Compiler:

g++ -x c++ run_bitacc_cmodel.c -o run_bitacc_cmodel -L.
-lIp_xfft_v8_0_bitacc_cmodel -Wl,-rpath,.

Windows (32-bit and 64-bit)
Link to the import library libIp_xfft_v8_0_bitacc_cmodel.lib. For example, for
Microsoft Visual Studio.NET, in Project Properties, under Linker -> Input, for Additional
Dependencies, specify libIp_xfft_v8_0_bitacc_cmodel.lib.

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 19
UG459 v3.2 September 21, 2010

FFT v8.0 MATLAB Software MEX Function

FFT v8.0 MATLAB Software MEX Function
The FFT v8.0 model is available as a MATLAB® software MEX function for seamless
integration with MATLAB software. The FFT MEX function provides a MATLAB software
interface to the FFT C model. The FFT MEX function and FFT C model produce identical
results, and both are bit accurate to the FFT core.

Building the MEX Function
A C++ wrapper and compilation script are provided to allow the MEX function to be built
for your MATLAB software version and operating system.

The FFT v8.0 C model does not support the LCC compiler shipped with MATLAB
software.

Xilinx has verified that the Microsoft Visual Studio 2005 (v8.0) C++ compiler can
successfully be used to build the MEX function on 32-bit Windows.

Xilinx has also verified that GCC version 4.1.1 can successfully be used to build the MEX
function on 32-bit and 64-bit Linux.

To build the MEX function:

1. Start the MATLAB software.

2. Change directory to the unzipped FFT v8.0 C model installation.

3. Use the mex -setup command at the MATLAB software command line to set up the
compiler. For more details on the mex command and the arguments it accepts, type
help mex at the MATLAB software command line

4. Execute the make_xfft_v8_0_mex.m file in the MATLAB software to build the MEX
function.

5. Verify that a file named xfft_v8_0_bitacc_mex.mex<suffix> is now present in
the current directory. The <suffix> portion of the filename depends on the platform
on which the function was compiled.

http://www.xilinx.com

20 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 3: FFT v8.0 Bit Accurate C Model

Installing and Running the MEX Function
To install the FFT MEX function, place the MEX file in your MATLAB software working
directory, or in the MATLAB software, change directory to the directory containing the
MEX file.

Note: For Windows platforms, the correct libIp_xfft_v8_0_bitacc_cmodel.dll and
stlport.5.1.dll files must be copied to the directory where the FFT MEX function has been
installed before running the MEX function.

Note: For Linux platforms, the libIp_xfft_v8_0_bitacc_cmodel.so and
libstlport.so.5.1 files must be copied to the directory where the FFT MEX function has been
installed before running the MEX function, or be visible via the $LD_LIBRARY_PATH environment
variable. $LD_LIBRARY_PATH must be set correctly before starting MATLAB software.

The FFT MEX function is called xfft_v8_0_bitacc_mex. Enter this function name
without arguments at the MATLAB software command line to see usage information. The
FFT MEX function syntax is:

[output_data, blk_exp, overflow] = xfft_v8_0_bitacc_mex(generics, nfft,
input_data, scaling_sch, direction)

The function's inputs are shown in Table 3-5.

Table 3-5: FFT MEX Function Inputs

Input Description Permitted values

generics Core parameters. Single-
element, 9-field structure
containing all relevant
generics defining the core

generics.C_NFFT_MAX log2(maximum transform
length)

3-16

generics.C_ARCH Architecture 1 = Radix-4, Burst I/O,
2 = Radix-2, Burst I/O,
3 = Pipelined, Streaming I/O,
4 = Radix-2 Lite, Burst I/O

generics.C_HAS_NFFT Run-time configurable
transform length

0 = no, 1 = yes

generics.C_USE_FLT_PT Core interface 0 = fixed point 1 = single-
precision floating
point

generics.C_INPUT_WIDTH Input data width 8-34 bits 32 bits

generics.C_TWIDDLE_WIDTH Phase factor width 8-34 bits 24-25 bits

generics.C_HAS_SCALING Type of scaling 0 = unscaled, 1 = other 0

generics.C_HAS_BFP Type of scaling if
C_HAS_SCALING = 1

0 = scaled,
1 = block floating point

0

generics.C_HAS_ROUNDING Type of rounding 0 = truncation,
1 = convergent rounding

0

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 21
UG459 v3.2 September 21, 2010

FFT v8.0 MATLAB Software MEX Function

Notes:

1. nfft input is only used for run-time configurable transform length (that is,
generics.C_HAS_NFFT = 1). It is ignored otherwise and generics.C_NFFT_MAX is
used instead.

2. For fixed-point input FFTs (that is, generics.C_USE_FLT_PT = 0), to ensure identical
numerical behavior to the hardware, pre-quantize the input_data values to have
precision determined by C_INPUT_WIDTH. This is easily achieved using the
MATLAB software built-in quantize function.

3. scaling_sch input is only used for a fixed-point input, scaled FFT (that is,
generics.C_USE_FLT_PT = 0, generics.C_HAS_SCALING = 1, and
generics.C_HAS_BFP = 0). It is ignored otherwise.

4. input_data may be in natural or bit/digit-reversed sample index order. The MEX
function produces samples in the same ordering format as they were input.

nfft log2(transform length) for this
transform. Single integer.

Maximum value is
C_NFFT_MAX.
Minimum value is 6 for
Radix-4, Burst I/O
architecture, or 3 for other
architectures.

Maximum value is
C_NFFT_MAX.
Minimum value is
6 for Radix-4, Burst
I/O architecture,
or
3 for other
architectures.

input_data Input data. 1D array of
complex data with 2nfft
elements.

All components must be
in the range of
-1.0 ≤ data < +1.0.

All components
must be
representable in
the MATLAB
software single
datatype
(equivalent to a
float in C++).

scaling_sch Scaling schedule. 1D array of
integer values size S = number
of stages. For Radix-4 and
Streaming architectures,
S = nfft/2, rounded up to the
next integer. For Radix-2 and
Radix-2 Lite architectures,
S = nfft.

Each value corresponds to
scaling to be performed
by the corresponding
stage and must be in the
range 0 to 3.
scaling_sch[1] is the
scaling for the first stage.

N/A

direction Transform direction. Single
integer.

1 = forward FFT,
0 = inverse FFT (IFFT)

1 = forward FFT,
0 = inverse FFT
(IFFT)

Table 3-5: FFT MEX Function Inputs (Continued)

Input Description Permitted values

http://www.xilinx.com

22 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 3: FFT v8.0 Bit Accurate C Model

The function's outputs are shown in Table 3-6.

Notes:

General

1. There is no need to create and destroy state, as must be done with the C model; this is
handled internally by the FFT MEX function.

2. The FFT MEX function performs extensive checking of its inputs. Any invalid input
results in a message reporting the error and the function terminates.

3. The MEX function produces data in the same order as the input data. Hence, if
input_data was provided in natural sample index order (0,1,2,3...), output_data
samples will also be in natural sample index order.

FFTs with Fixed-Point Interface

1. Input data is an array of complex double-precision floating-point data, but the FFT
core being modeled requires data in signed two's-complement, fixed-point format
with precision given by C_INPUT_WIDTH. The data has a sign bit, then the binary
point, then (C_INPUT_WIDTH - 1) fractional bits. The FFT MEX function checks the
input data to see if it fits within this format and precision. If not, it prints a warning,
and internally rounds it using convergent rounding (halfway values are rounded to
the nearest even number) to the required precision. To accurately model the FFT core,
pre-quantize the input data to this required precision before passing it to the model.
This can be done easily using the MATLAB software built-in quantize function.

Type help quantizer/quantize or doc quantize on the MATLAB software
command line for more information.

2. Output data has the correct precision to model the FFT:

a. If the FFT is scaled or has block floating point (that is, C_HAS_SCALING = 1,
C_HAS_BFP = 0 or 1, respectively), output data is all in the range
-1.0 ≤ data < +1.0, the precision is C_INPUT_WIDTH bits, with
C_INPUT_WIDTH-1 fractional bits. For example, if C_INPUT_WIDTH = 8,
output data is precise to 2-7 = 0.0078125 and is in the range -1.0 to +0.9921875, and
the binary representation of the output data has the format s.fffffff, where s is the
sign bit and f is a fractional bit.

Table 3-6: FFT MEX Function Outputs

Output Description Validity

output_data Output data. 1D array of complex data
with 2nfft elements.

Always valid.

blk_exp Block exponent. Single integer. Only valid if using block floating point (if
generics.C_HAS_SCALING = 1 and C_HAS_BFP = 1). Will
be zero otherwise.

overflow Overflow. Single integer. 1 indicates
overflow occurred, 0 indicates no
overflow occurred.

Only valid with a scaled FFT (if
generics.C_HAS_SCALING = 1 and generics.C_HAS_BFP
= 0) or an FFT with floating point interfaces (that is,
generics.C_USE_FLT_PT = 1). Will be zero otherwise.

http://www.xilinx.com

FFT v8.0 Bit Accurate C Model www.xilinx.com 23
UG459 v3.2 September 21, 2010

MEX Function Example Code

b. If the FFT is unscaled (C_HAS_SCALING = 0), output data grows beyond ± 1.0,
such that the binary point remains in the same place and there are still
(C_INPUT_WIDTH - 1) fractional bits after the binary point. In total, the output
precision is (C_INPUT_WIDTH + C_NFFT_MAX + 1) bits. For example, if
C_INPUT_WIDTH = 8 and C_NFFT_MAX = 3, output data is precise to 2-7 =
0.0078125 and is in the range -16.0 to +15.9921875, and the binary representation of
the output data has the format siiii.fffffff, where s is the sign bit, i is an integer bit,
and f is a fractional bit.

3. blk_exp is the integer block exponent. It is only valid (and non-zero) if block floating
point is used (that is, C_HAS_SCALING = 1 and C_HAS_BFP = 1). It indicates the total
number of bits that intermediate values were shifted right during the FFT processing.
For example, if blk_exp = 5, the output data has been divided by 32 relative to the
magnitude of the input data.

4. overflow indicates if overflow occurred during the FFT processing. It is only valid (and
non-zero) if fixed scaling is used (that is, C_HAS_SCALING = 1 and C_HAS_BFP = 0).
A value of 0 indicates that overflow did not occur; a value of 1 indicates that overflow
occurred at some stage in the FFT processing. To avoid overflow, increase the scaling at
one or more stages in the scaling schedule (scaling_sch input).

5. If overflow occurred with the Pipelined, Streaming I/O architecture (C_ARCH = 3)
due to differences between the FFT core and the model in the order of operations
within the processing stage, the output data may not match the XK_RE and XK_IM
outputs of the FFT core. The output data must be ignored if the overflow output is 1.
This is the only case where the model is not entirely bit accurate to the core.

FFTs with Floating-Point Interface

1. Input data is an array of complex double-precision floating-point data, but the FFT
core being modeled requires values in single-precision (32-bit) format. The data must
therefore be representable in the MATLAB software ‘single’ datatype, even if it is
represented in the ‘double’ datatype. The value will be explicitly cast to the C++ ‘float’
datatype inside the MEX function.

2. Output data has the correct precision to model the FFT. The double-precision output
array will contain single-precision values which are representable in the MATLAB
software ‘single’ datatype without error.

3. overflow indicates if exponent overflow has occurred during the FFT processing. A
value of 0 indicates that overflow did not occur; a value of 1 indicates that exponent
overflow did occur.

4. If overflow occurred, the output sample that overflowed will be set to ± Infinity,
depending on the sign of the internal result.

MEX Function Example Code
An example M file, run_xfft_v8_0_mex.m, is provided. This demonstrates the steps
required to run the MEX function: set up generics, create input data, simulate the FFT, and
use the outputs. The code works for all legal combinations of generics. Simply modify the
declarations of generics at the top of the file. The code also illustrates how to model a
multichannel FFT; see “Modeling Multichannel FFTs.”

The example code can be used to test your MEX function compilation process. See
“Building the MEX Function.”

http://www.xilinx.com

24 www.xilinx.com FFT v8.0 Bit Accurate C Model
UG459 v3.2 September 21, 2010

Chapter 3: FFT v8.0 Bit Accurate C Model

Modeling Multichannel FFTs
The FFT v8.0 C model and FFT v8.0 MEX function are single-channel models that do not
directly model multichannel FFTs. However, it is very simple to model multichannel FFTs.

By definition, a multichannel FFT is equivalent to multiple identical single-channel FFTs,
each operating on different input data. Therefore a multichannel FFT can be modeled
simply by running a single-channel model several times on each channel's input data.

For the FFT v8.0 C model, the example C++ code provided, run_bitacc_cmodel.c,
demonstrates how to model a multichannel FFT. This example code creates the FFT state
structure, then uses a loop to run the model on each channel's input data in turn, then
finally destroys the state structure.

For the FFT MEX function, simply call the function on each channel's input data in turn.

http://www.xilinx.com

	LogiCORE™ IP Fast Fourier Transform v8.0 Bit Accurate C Model
	Revision History
	Table of Contents
	About This Guide
	Contents
	Conventions
	Typographical
	Online Document

	Introduction
	Features
	Overview
	Additional Core Resources
	Technical Support
	Feedback
	FFT v8.0 Bit Accurate C Model and IP Core
	Document

	User Instructions
	Unpacking and Model Contents
	Installation
	Software Requirements

	FFT v8.0 Bit Accurate C Model
	FFT v8.0 C Model Interface
	Create a State Structure
	Simulate the FFT Core
	Destroy the State Structure

	C Model Example Code
	Compiling with the FFT v8.0 C Model
	Linux (32-bit and 64-bit)
	Windows (32-bit and 64-bit)

	FFT v8.0 MATLAB Software MEX Function
	Building the MEX Function
	Installing and Running the MEX Function

	MEX Function Example Code
	Modeling Multichannel FFTs

